Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex.
View Article and Find Full Text PDFThe thalamus connects the cortex with other brain regions and supports sensory perception, movement, and cognitive function via numerous distinct nuclei. However, the mechanisms underlying the development and organization of diverse thalamic nuclei remain largely unknown. Here we report an intricate ontogenetic logic of mouse thalamic structures.
View Article and Find Full Text PDFProgenitor cells in the medial ganglionic eminence (MGE) and preoptic area (PoA) give rise to GABAergic inhibitory interneurons that are distributed in the forebrain, largely in the cortex, hippocampus, and striatum. Two previous studies suggest that clonally related interneurons originating from individual MGE/PoA progenitors frequently form local clusters in the cortex. However, Mayer et al.
View Article and Find Full Text PDF