Publications by authors named "Anjil Giri"

Microtubules have long been implicated to play an integral role in metastatic disease, for which a critical step is the local invasion of tumor cells into the 3-dimensional (3D) collagen-rich stromal matrix. Here we show that cell migration of human cancer cells uses the dynamic formation of highly branched protrusions that are composed of a microtubule core surrounded by cortical actin, a cytoskeletal organization that is absent in cells on 2-dimensional (2D) substrates. Microtubule plus-end tracking protein End-binding 1 and motor protein dynein subunits light intermediate chain 2 and heavy chain 1, which do not regulate 2D migration, critically modulate 3D migration by affecting RhoA and thus regulate protrusion branching through differential assembly dynamics of microtubules.

View Article and Find Full Text PDF

Cells induced into senescence exhibit a marked increase in the secretion of pro-inflammatory cytokines termed senescence-associated secretory phenotype (SASP). Here we report that SASP from senescent stromal fibroblasts promote spontaneous morphological changes accompanied by an aggressive migratory behavior in originally non-motile human breast cancer cells. This phenotypic switch is coordinated, in space and time, by a dramatic reorganization of the actin and microtubule filament networks, a discrete polarization of EB1 comets, and an unconventional front-to-back inversion of nucleus-MTOC polarity.

View Article and Find Full Text PDF

Cell migration through 3D extracellular matrices (ECMs) is crucial to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. The motility of eukaryotic cells on 2D substrates in the absence of gradients has long been described using persistent random walks (PRWs). Recent work shows that 3D migration is anisotropic and features an exponential mean cell velocity distribution, rendering the PRW model invalid.

View Article and Find Full Text PDF

Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations.

View Article and Find Full Text PDF

Arp2/3 is a protein complex that nucleates actin filament assembly in the lamellipodium in adherent cells crawling on planar 2-dimensional (2D) substrates. However, in physiopathological situations, cell migration typically occurs within a 3-dimensional (3D) environment, and little is known about the role of Arp2/3 and associated proteins in 3D cell migration. Using time resolved live-cell imaging and HT1080, a fibrosarcoma cell line commonly used to study cell migration, we find that the Arp2/3 complex and associated proteins N-WASP, WAVE1, cortactin, and Cdc42 regulate 3D cell migration.

View Article and Find Full Text PDF

Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles - the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration.

View Article and Find Full Text PDF

Spontaneous molecular oscillations are ubiquitous in biology. But to our knowledge, periodic cell migratory patterns have not been observed. Here we report the highly regular, periodic migration of cells along rectilinear tracks generated inside three-dimensional matrices, with each excursion encompassing several cell lengths, a phenotype that does not occur on conventional substrates.

View Article and Find Full Text PDF