ACS Appl Mater Interfaces
February 2024
Developing high-performing solid electrolytes that could replace flammable organic liquid electrolytes is vital in designing safer solid-state batteries. Among the sodium-ion (Na) conducting solid electrolytes, Na-β″-alumina (BASE) is highly regarded for its employment in solid-state battery applications due to its high ionic conductivity and electrochemical stability. BASE has long been employed in commercial Na-NiCl and Na-S batteries.
View Article and Find Full Text PDFP2-type cobalt-free MnNi-based layered oxides are promising cathode materials for sodium-ion batteries (SIBs) due to their high reversible capacity and well chemical stability. However, the phase transformations during repeated (dis)charge steps lead to rapid capacity decay and deteriorated Na diffusion kinetics. Moreover, the electrode manufacturing based on polyvinylidene difluoride (PVDF) binder system has been reported with severely defluorination issue as well as the energy intensive and expensive process due to the use of toxic and volatile N-methyl-2-pyrrolidone (NMP) solvent.
View Article and Find Full Text PDFHere, we provide a deeper insight into the state of sulfur confined in ultramicroporous carbon (UMC) and clarify its electrochemical reaction mechanism with lithium by corroborating the results obtained using various experimental techniques, such as X-ray photoelectron spectroscopy, electron energy loss spectroscopy, Raman spectroscopy, and electrochemical impedance spectroscopy. In combination, these results indicate that sulfur in UMC exists as linear polymeric sulfur rather than smaller allotropes. The electrochemical reactivity of lithium with sulfur confined in UMC (pore size ≤0.
View Article and Find Full Text PDF