Biological processes are inherently dynamic, necessitating biomaterial platforms capable of spatiotemporal control over cellular organization and matrix stiffness for accurate study of tissue development, wound healing, and disease. However, most in vitro platforms remain static. In this study, a dynamic biomaterial platform comprising a stiffening hydrogel is introduced and achieved through a stepwise approach of addition followed by light-mediated crosslinking, integrated with an elastomeric substrate featuring strain-responsive lamellar surface patterns.
View Article and Find Full Text PDF