Publications by authors named "Anjel Helms"

Plants and invertebrates use chemical signals and cues to construct information about their environment. It is well reviewed that chemical signals play key roles in interactions between conspecific insects, such as sex pheromones for finding mates, and that plants transmit chemical signals to recruit natural enemies that kill herbivores. However, it is also known that chemicals emitted by natural enemies can influence insect herbivore physiology and behavior.

View Article and Find Full Text PDF

Collective behaviors of social insects are often regulated by pheromones. In subterranean termites, some workers forage for and exploit decaying wood for new food resources while forming tunnels from their nest. Colonizing new food resources requires workers to build and disinfect tunnels and chambers inside the nest and ingest decaying wood; therefore subterranean termite colonies should have mechanisms to establish and maintain groups of workers to perform these functions.

View Article and Find Full Text PDF

The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald).

View Article and Find Full Text PDF

Plants transmit ecologically relevant messages to neighbouring plants through chemical cues. For instance, insect herbivory triggers the production of herbivore-induced plant volatiles (HIPVs), which can enhance neighbouring plant defences. HIPVs are emitted from directly damaged plant tissues and from systemic, nondamaged tissues.

View Article and Find Full Text PDF

Plants can detect herbivore-induced plant volatiles (HIPVs) from their damaged neighbours and respond by enhancing or priming their defenses against future herbivore attack. Plant communication and defense priming by volatile cues has been well documented, however, the extent to which plants are able to perceive and respond to these cues across different environmental contexts remains poorly understood. We investigated how abiotic changes that modulate stomatal conductance and/or defense signalling affect the ability of maize plants to perceive HIPVs and respond by priming their defenses.

View Article and Find Full Text PDF

How aphid parasitoids of recent invasive species interact with their hosts can affect the feasibility of biological control. In this study, we focus on a recent invasive pest of US grain sorghum, , the sorghum aphid (SA), . Understanding this pest's ecology in the grain sorghum agroecosystem is critical to develop effective control strategies.

View Article and Find Full Text PDF

Domestication affected the abundances and diversity of maize root volatiles more than northward spread and modern breeding, and herbivore preference for roots was correlated with volatile diversity and herbivore resistance. Studies show that herbivore defenses in crops are mediated by domestication, spread, and breeding, among other human-driven processes. They also show that those processes affected chemical communication between crop plants and herbivores.

View Article and Find Full Text PDF

In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring.

View Article and Find Full Text PDF
Article Synopsis
  • Host-associated differentiation (HAD) describes how different genetically distinct populations of a species, like pests, prefer certain host plants, leading to unique pest strains that target various crops.
  • This phenomenon doesn't stop with pests; it can also influence the predators (natural enemies) that feed on them, which can impact biological control strategies, including classical and conservation methods.
  • The paper highlights knowledge gaps regarding HAD in biological control, focuses on the role of chemical signals in pest-predator interactions, and calls for more research on how to effectively incorporate HAD into biological control strategies.
View Article and Find Full Text PDF

Plants allocate their limited resources toward different physiological processes, dynamically adjusting their resource allocation in response to environmental changes. How beneficial plant-associated microbes influence this allocation is a topic that continues to interest plant biologists. In this study, we examined the effect of a beneficial fungus, on investment in growth and anti-herbivore resistance traits in cucumber plants ().

View Article and Find Full Text PDF
Article Synopsis
  • Cultivated cotton plants produce extrafloral nectar as a defense mechanism against herbivores, attracting predatory insects like ants in exchange for this resource.
  • Foliar herbivory on G. hirsutum leads to an increase in sucrose content in its bracteal extrafloral nectar, while glucose and fructose levels remain unchanged.
  • Despite the increase in sucrose, ants did not show a preference for varying sucrose levels in nectar solutions, indicating further research is needed to understand the implications of this nectar response in cotton plants.
View Article and Find Full Text PDF

Biological invasions are becoming more prevalent due to the rise of global trade and expansion of urban areas. Ants are among the most prolific invaders with many exhibiting a multiqueen colony structure, dependent colony foundation and reduced internest aggression. Although these characteristics are generally associated with the invasions of exotic ants, they may also facilitate the spread of native ants into novel habitats.

View Article and Find Full Text PDF

In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants.

View Article and Find Full Text PDF

Chemical cues play important roles in predator-prey interactions. Semiochemicals can aid predator foraging and alert prey organisms to the presence of predators. Previous work suggests that predator traits differentially influence prey behavior, however, empirical data on how prey organisms respond to chemical cues from predator species with different hunting strategies, and how foraging predators react to cues from potential competitors, is lacking.

View Article and Find Full Text PDF

The ecological success of ants has made them abundant in most environments, yet inter- and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non-nestmates. Native to South America, has recently invaded many locations worldwide, with invasive populations described as extremely large and dense.

View Article and Find Full Text PDF

The production of royal pheromones by reproductives (queens and kings) enables social insect colonies to allocate individuals into reproductive and non-reproductive roles. In many termite species, nestmates can develop into neotenics when the primary king or queen dies, which then inhibit the production of additional reproductives. This suggests that primary reproductives and neotenics produce royal pheromones.

View Article and Find Full Text PDF

Eurosta solidaginis males produce large amounts of putative sex pheromone compared to other insect species; however, neither the site of pheromone production nor the release mechanism has been characterized. We compared E. solidaginis males and females, focusing on sexually dimorphic structures that are known to be involved in pheromone production in other tephritid species.

View Article and Find Full Text PDF

Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this 'cry for help' has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches.

View Article and Find Full Text PDF

There is increasing evidence that plant-associated microorganisms play important roles in shaping interactions between plants and insect herbivores. Studies of both pathogenic and beneficial plant microbes have documented wide-ranging effects on herbivore behavior and performance. Some studies, for example, have reported enhanced insect-repellent traits or reduced performance of herbivores on microbe-associated plants, while others have documented increased herbivore attraction or performance.

View Article and Find Full Text PDF

Multiple species of phytophagous insects may co-occur on a plant and while plants can defend themselves from insect herbivory, plant responses to damage by different species and feeding guilds of insects may be asymmetric. Plants can trigger specific responses to elicitors/effectors in insect secretions altering herbivore performance. Recently, maize chitinases present in fall armyworm (FAW, Spodoptera frugiperda) frass were shown to act as effectors suppressing caterpillar-induced defenses in maize while increasing caterpillar performance.

View Article and Find Full Text PDF

Insect herbivory induces plant defense responses that are often modulated by components in insect saliva, oral secretions or regurgitant, frass, or oviposition fluids. These secretions contain proteins and small molecules that act as elicitors or effectors of plant defenses. Several non-protein elicitors have been identified from insect oral secretions, whereas studies of insect saliva have focused mainly on protein identification.

View Article and Find Full Text PDF

In this study we examined global changes in protein expression in both roots and leaves of maize plants attacked by the root herbivore, Western corn rootworm (WCR, Diabrotica virgifera virgifera). The changes in protein expression Are indicative of metabolic changes during WCR feeding that enable the plant to defend itself. This is one of the first studies to look above- and below-ground at global protein expression patterns of maize plants grown in soil and infested with a root herbivore.

View Article and Find Full Text PDF

It is increasingly clear that plants perceive and respond to olfactory cues. Yet, knowledge about the specificity and sensitivity of such perception remains limited. We previously documented priming of anti-herbivore defenses in tall goldenrod plants (Solidago altissima) by volatile emissions from a specialist herbivore, the goldenrod gall fly (Eurosta solidaginis).

View Article and Find Full Text PDF

Caterpillar behaviors such as feeding, crawling, and oviposition are known to induce defenses in maize and other plant species. We examined plant defense responses to another important caterpillar behavior, their defecation. Fall armyworms (FAW, Spodoptera frugiperda), a major threat to maize (Zea mays), are voracious eaters and deposit copious amounts of frass in the enclosed whorl tissue surrounding their feeding site, where it remains for long periods of time.

View Article and Find Full Text PDF