Xanthione is a sulfated polycyclic aromatic hydrocarbon which exhibits unique anti-Kasha properties and substantial sensitivity to its medium. Due to this sensitivity however, this makes xanthione-based systems very difficult to simulate. Further, xanthione's is understood to be come more photostable in the presence of a highly polar medium, however whether these photophysical properties could be taken advantage of for certain applications remains to be seen.
View Article and Find Full Text PDFGating logical operations through high-lying electronic excited states presents opportunities for developing ultrafast, subnanometer computational devices. A lack of molecular systems with sufficiently long-lived higher excited states has hindered practical realization of such devices, but recent studies have reported intriguing photophysics from high-lying excited states of perylene. In this work, we use femtosecond spectroscopy supported by quantum chemical calculations to identify and quantify the relaxation dynamics of monomeric perylene's higher electronic excited states.
View Article and Find Full Text PDFThe first order and second order corrected photoluminescence quantum yields are computed and compared to experiment for naphthalene in this manuscript discussing negative results. Results for anthracene and tetracene are recalled from previous work (Manian et al. in J Chem Phys 155:054108, 2021), and the results for all three polyacenes are juxtaposed to each other.
View Article and Find Full Text PDFWe present the first benchmarking study of nonadiabatic matrix coupling elements (NACMEs) calculated using different density functionals. Using the → transition in perylene solvated in toluene as a case study, we calculate the photophysical properties and corresponding rate constants for a variety of density functionals from each rung of Jacob's ladder. The singlet photoluminescence quantum yield (sPLQY) is taken as a measure of accuracy, measured experimentally here as 0.
View Article and Find Full Text PDFDNAzyme-based (catalytic nucleic acid) biosensing technology is recognised as a valuable biosensing tool in diagnostic medicine and seen as a cheaper, more stable alternative to antibodies or enzymes. However, like enzyme discovery, no method exists to predict DNAzyme sequences that result in high catalytic activity using computer software (). In this work, iterative maturation and evaluation were applied to a DNAzyme oligodeoxynucleotide (ODN) sequence to elucidate novel synthetic sequences with enhanced DNAzyme activity.
View Article and Find Full Text PDFThis paper explores phosphorescence from a first principles standpoint, and examines the intricacies involved in calculating the spin-forbidden → transition dipole moment, to highlight that the mechanism is not as complicated to compute as it seems. Using gas phase acridine as a case study, we break down the formalism required to compute the phosphorescent spectra within both the Franck-Condon and Herzberg-Teller regimes by coupling the first triplet excited state up to the and states. Despite the first singlet excited state appearing as an state and not of nπ* character, the second order corrected rate constant was found to be 0.
View Article and Find Full Text PDFAb initio treatments of interexcited state internal conversion (IC) are more often than not missing from exciton dynamic descriptions, because of their inherent complexity. Here, we define "interexcited state IC" as a same-spin nonradiative transition between states and , where ≠ ≠ 0. Competing directly with multiexciton processes such as singlet fission or triplet photoupconversion, inclusion of this mechanism in the narrative of molecular photophysics would allow for strategic synthesis of chromophores for more efficient photon-harvesting applications.
View Article and Find Full Text PDFIn this paper, we investigate the efficacy of different quantum chemical solvent modelling methods of indole in both water and methylcyclohexane solutions. The goal is to show that one can yield good photophysical properties in strongly coupled solute-solvent systems using standard DFT methods. We use standard and linearly-corrected Polarisable Continuum Models (PCM), as well as explicit solvation models, and compare the different model parameters, including the choice of density functional, basis set, and number of explicit solvent molecules.
View Article and Find Full Text PDFThis work presents algorithms for the efficient enumeration of configuration spaces following Boltzmann-like statistics, with example applications to the calculation of non-radiative rates, and an open-source implementation. Configuration spaces are found in several areas of physics, particularly wherever there are energy levels that possess variable occupations. In bosonic systems, where there are no upper limits on the occupation of each level, enumeration of all possible configurations is an exceptionally hard problem.
View Article and Find Full Text PDFPerylene diimide (PDI) derivatives are widely used materials for luminescent solar concentrator (LSC) applications due to their attractive optical and electronic properties. In this work, we study aggregation-induced exciton quenching pathways in four PDI derivatives with increasing steric bulk, which were previously synthesized. We combine molecular dynamics and quantum chemical methods to simulate the aggregation behavior of chromophores at low concentration and compute their excited state properties.
View Article and Find Full Text PDF