Publications by authors named "Anjani K Upadhyay"

Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health.

View Article and Find Full Text PDF

Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death.

View Article and Find Full Text PDF

The increase in the slaughter of pregnant cows (SPCs) for meat (except as may be approved by veterinarians on health grounds to salvage the animal) is unethical. SPCs for meat is also counterproductive, detrimental to food security, and may enhance zoonotic disease transmission. In this context, therefore, this current study examined slaughter conditions and the slaughtering of pregnant cows, and the implications for meat quality, food safety, and food security in Southeast Nigeria.

View Article and Find Full Text PDF

Optimization of media composition for microbial growth is crucial particularly in industrial processes to obtain the desired end product. The waste from sea food industries includes the non-edible parts of shrimp, crabs and prawns which are rich in chitin as the major cause of pollution in coastal areas. Chitin degradation is carried out chemically.

View Article and Find Full Text PDF

Chitin is one of the most abundant biopolymers present in the environment. Chitosan being its major derivative can be obtained by hydrolysis of chitin, especially by microbial degradation. Estimation of resulting chitosan produced by chitin degradation is crucial to the process.

View Article and Find Full Text PDF