Lithium ion batteries (LIBs) with polymer based electrolytes have attracted enormous attention due to the possibility of fabricating intrinsically safer and flexible devices. However, economical and eco-friendly sustainable technology is an oncoming challenge to fulfill the ever increasing demand. To circumvent this issue, we have developed a gel polymer electrolyte (GPE) based on renewable polymers like cellulose triacetate and poly(polyethylene glycol methacrylate) p(PEGMA) using a photo polymerization technique.
View Article and Find Full Text PDFDespite recent advances in diagnostic and therapeutic methods in antifungal research, aspergillosis still remains a leading cause of morbidity and mortality. One strategy to address this problem is to enhance the activity spectrum of known antifungals, and we now report the first successful application of lipase (CAL) for the preparation of optically enriched fluconazole analogues. Anti- activity was observed for an optically enriched derivative, (-)--2-(2',4'-difluorophenyl)-1-hexyl-amino-3-(1‴,2‴,4‴)triazol-1‴-yl-propan-2-ol, which exhibits MIC values of 15.
View Article and Find Full Text PDFLithium ion batteries (LIB) are the most promising energy storage systems for portable electronics and future electric or hybrid-electric vehicles. However making them safer, cost effective and environment friendly is the key challenge. In this regard, replacing petro-derived materials by introducing renewable biomass derived cellulose derivatives and lignin based materials into the battery system is a promising approach for the development of green materials for LIB.
View Article and Find Full Text PDFHighly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC) by the lipase from suspended in tetrahydrofuran (THF) at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.
View Article and Find Full Text PDFOxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose.
View Article and Find Full Text PDFPretreatment and enzymatic hydrolysis play a critical role in the economic production of sugars and fuels from lignocellulosic biomass. In this study, we evaluated diverse pilot-scale pretreatments and different post-pretreatment strategies for the production of fermentable sugars from sugarcane bagasse. For the pretreatment of bagasse at pilot-scale level, steam explosion without catalyst and combination of sulfuric and oxalic acids at low and high loadings were used.
View Article and Find Full Text PDFOxidized cellulose containing carboxyl and aldehyde functional groups represent an important class of cellulose derivatives. In this study effect of incrementally increasing COOH and CHO groups at C2, C3, and C6 positions of cellulose and nanocellulose has been investigated, with a view to understanding their effect on thermal treatment of cellulose. The results show that 2,3-dialdehyde cellulose (DAC) is the most thermally stable oxidized product of cellulose while the most unstable derivatives contain carboxyl group at the C6 position (6CC).
View Article and Find Full Text PDFCellulose-I swells considerably in phosphoric acid, and converts to amorphous cellulose via a cellulose-II transition state. Controlled oxidation of cellulose-I to 6-carboxycellulose (6 CC) using HNO3-H3PO4-NaNO2 oxidation system led to the selective production of 6 CC's of varying carboxyl contents (1.7-22%) as well as various shapes and sizes (macro-sized fibrils of several micron length and/or spherical nanoparticles of 25-35 nm), depending on the reaction conditions.
View Article and Find Full Text PDFAgricultural residue derived cellulose and cotton cellulose were used to synthesize quasi-spherical nanoparticles of 6-carboxycellulose having diameter 25-35 nm. This provides a new range of functionalized nanostructured celluloses with increased versatility and applications. The nanoparticles were efficient in stabilizing carbon nanotube dispersions and were effective anti-microbial agents against E.
View Article and Find Full Text PDFA hypothesis was developed, and successfully tested, to greatly increase the rates of biodegradation of polyolefins, by anchoring minute quantities of glucose, sucrose or lactose, onto functionalized polystyrene (polystyrene-co-maleic anhydride copolymer) and measuring their rates of biodegradation, which were found to be significantly improved.
View Article and Find Full Text PDFmyo-Inositol-derived crown ethers having varying relative orientations (1,3-diaxial, 1,2-diequatorial, and 1,2-axial-equatorial) of the oxygen atoms in the ionophoric ring were synthesized and the extent of their binding with picrates of alkali metals, ammonia, and silver were estimated. These crown ethers bind very well with potassium and silver picrates and show good to moderate binding toward lithium, sodium, cesium, and ammonium picrates. These myo-inositol-derived crown ethers exhibit very strong binding for silver, even though they do not have sulfur or nitrogen coordinating sites in them, which are known to have high affinity for silver.
View Article and Find Full Text PDF