Publications by authors named "Anjan Kowluru"

Purpose: Early activation of cytosolic NADPH oxidase-2 (Nox2) in diabetes increases retinal ROS production, damaging their mitochondria. The assembly of Nox2 holoenzyme requires activation of a small molecular weight G protein Rac1. Rac1 activation is regulated by guanine exchange factors and guanine nucleotide-dissociation inhibitors, and post-translational modifications assist in its association with exchange factors and dissociation inhibitors.

View Article and Find Full Text PDF

Diabetic retinopathy, a microvascular complication of diabetes, remains the leading cause of vision loss in working age adults. Hyperglycemia is considered as the main instigator for its development, around which other molecular pathways orchestrate. Of these multiple pathways, oxidative stress induces many metabolic, functional and structural changes in the retinal cells, leading to the development of pathological features characteristic of this blinding disease.

View Article and Find Full Text PDF

Background/aims: Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g.

View Article and Find Full Text PDF

Purpose: Although hyperglycemia is the main instigator in the development of diabetic retinopathy, dyslipidemia is also considered to play an important role. In the pathogenesis of diabetic retinopathy, cytosolic NADPH oxidase 2 (Nox2) is activated before retinal mitochondria are damaged. Our aim was to investigate the effect of lipids in the development of diabetic retinopathy.

View Article and Find Full Text PDF

Diabetic retinopathy remains the major cause of blindness among working age adults. Although a number of metabolic abnormalities have been associated with its development, due to complex nature of this multi-factorial disease, a link between any specific abnormality and diabetic retinopathy remains largely speculative. Diabetes increases oxidative stress in the retina and its capillary cells, and overwhelming evidence suggests a bidirectional relationship between oxidative stress and other major metabolic abnormalities implicated in the development of diabetic retinopathy.

View Article and Find Full Text PDF

Expression of the metastasis suppressor NME1 in melanoma is associated with reduced cellular motility and invasion in vitro and metastasis in vivo, but the underlying molecular mechanisms are not completely understood. Herein, we report a novel mechanism through which NME1 controls melanoma cell morphology via upregulation of the extracellular matrix (ECM) protein fibronectin. Expression of NME1 strongly suppressed cell motility in melanoma cell lines 1205LU and M14.

View Article and Find Full Text PDF

Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process.

View Article and Find Full Text PDF

We have demonstrated that the expressions of small molecular weight G-protein, H-Ras, and its effector protein, Raf-1, are increased in the retina in diabetes, and the specific inhibitors of Ras function inhibit glucose-induced apoptosis of retinal capillary cells. This study is to examine the contributory roles for H-Ras in glucose-induced apoptosis of retinal endothelial cells by genetic manipulation of functionally active H-Ras levels. Bovine retinal endothelial cells were transfected with the plasmids of either wild type (WT), constitutively active (V12) or dominant-negative (N17) H-Ras.

View Article and Find Full Text PDF