Publications by authors named "Anjali Kharb"

Picrorhiza kurroa is a valuable medicinal herb of Himalayan region, containing two major pharmacological iridoid glycosides: Picroside-I and Picroside-II, in addition to several other secondary metabolites. The metabolic diversity of P. kurroa may stem from the evolutionary processes attributed to pathway genes family expansion via gene duplication or splicing giving rise to paralogues which are further controlled by regulatory components.

View Article and Find Full Text PDF

Nucleic acid amplification technique (NAAT)-assisted detection is the primary intervention for pathogen molecular diagnostics. However, NAATs such as quantitative real-time polymerase chain reaction (qPCR) require prior purification or extraction of target nucleic acid from the sample of interest since the latter often contains polymerase inhibitors. Similarly, genetic disease screening is also reliant on the successful extraction of pure patient genomic DNA from the clinical sample.

View Article and Find Full Text PDF

Background: Picrorhiza kurroa has been reported as an age-old ayurvedic hepato-protection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons in comparison to leaves uprooting of this critically endangered herb has been the only source of this compound.

View Article and Find Full Text PDF

Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage.

View Article and Find Full Text PDF

The five-year survival rate of esophageal cancer patients is less than 20%. This may be due to increased resistance (acquired or intrinsic) of tumor cells to chemo/radiotherapies, often caused by aberrant cell cycle, deregulated apoptosis, increases in growth factor signaling pathways, and/or changes in the proteome network. In addition, deregulation in non-coding RNA-mediated signaling pathways may contribute to resistance to therapies.

View Article and Find Full Text PDF