Publications by authors named "Anjali Bisaria"

Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na channel activities, and contractile dysfunction.

View Article and Find Full Text PDF

During muscle regeneration, extracellular signal-regulated kinase (ERK) promotes both proliferation and migration. However, the relationship between proliferation and migration is poorly understood in this context. To elucidate this complex relationship on a physiological level, we established an intravital imaging system for measuring ERK activity, migration speed, and cell-cycle phases in mouse muscle satellite cell-derived myogenic cells.

View Article and Find Full Text PDF

Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps.

View Article and Find Full Text PDF
Article Synopsis
  • Cell migration involves the growth of F-actin at the front of the cell, but F-actin near the membrane also creates resistance against outward growth.
  • A new fluorescent reporter was developed to observe the density of membrane-proximal F-actin (MPA) during migration, revealing that MPA density is high at the back and low at the front.
  • The lower density of MPA at the front allows for the formation of new membrane protrusions, which helps to maintain the cell's polarized shape during movement.
View Article and Find Full Text PDF

The development and maintenance of tissues requires collective cell movement, during which neighbouring cells coordinate the polarity of their migration machineries. Here, we ask how polarity signals are transmitted from one cell to another across symmetrical cadherin junctions, during collective migration. We demonstrate that collectively migrating endothelial cells have polarized VE-cadherin-rich membrane protrusions, 'cadherin fingers', which leading cells extend from their rear and follower cells engulf at their front, thereby generating opposite membrane curvatures and asymmetric recruitment of curvature-sensing proteins.

View Article and Find Full Text PDF

Microfluidic platforms are ideal for generating dynamic temporal and spatial perturbations in extracellular environments. Single cells and organisms can be trapped and maintained in microfluidic platforms for long periods of time while their responses to stimuli are measured using appropriate fluorescence reporters and time-lapse microscopy. Such platforms have been used to study problems as diverse as C.

View Article and Find Full Text PDF

Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline.

View Article and Find Full Text PDF