Herein, we report a controlled introduction of an amide unit at the ortho-position of an electron-deficient arylamide system without affording any cyclized products using user-friendly dioxazolone as an amidating reagent in the presence of a Rh(III)-catalyst. This is the first report where native primary amide has been utilized as a weakly coordinating group for site-selective C-N bond formation reaction. The developed protocol works under external auxiliary-free conditions with a wide substrate scope.
View Article and Find Full Text PDFHerein, we report a mild and economical route for the stereoselective synthesis of 2-deoxy and 2,6-dideoxyglycosides via FeCl-catalyzed activation of bench stable deoxy-phenylpropiolate glycosyl donors (D-PPGs). Optimized reaction conditions work well under additive-free conditions to afford the corresponding 2-deoxy and 2,6-dideoxyglycosides in good yields with high α-anomeric selectivity by reacting with sugar and non-sugar-based acceptors. The optimized conditions were also extended for disarmed D-PPG donors.
View Article and Find Full Text PDFRu(II)-catalyzed regioselective -alkenylation of primary benzamides with activated olefins has been realized over the competitive cyclized products. This reaction overall proceeds via a cross-dehydrogenative coupling (CDC) reaction using a simple and weakly coordinating primary amide group in the presence of an inexpensive Ru(II) salt and allows the controlled introduction of olefin motifs at the -position of benzamides. The key to the success of this strategy depends on fine-tuning the reaction conditions.
View Article and Find Full Text PDF