Publications by authors named "Anja Ruchatz"

We aimed to use cell-based carriers to direct vector production to target sites for systemic therapy. We used T cells engineered to express a chimeric T cell receptor that can specifically recognize target cells expressing the tumor-associated carcinoembryonic antigen (CEA). These T cells were modified to produce a retrovirus under tight pharmacological control using the rapamycin-inducible transcriptional regulatory system.

View Article and Find Full Text PDF

High-level systemic delivery of viral vectors to tumors has proved problematic as a result of immune neutralization, nonspecific adhesion, and clearance of circulating viral particles. Some cell types localize to tumors in response to particular biological properties associated with tumor growth. Their use to deliver viral vectors to tumors would allow precious viral stocks to be protected until they can be released at high local concentrations.

View Article and Find Full Text PDF

Replication-competent adenoviral vectors are potentially far more efficient than replication-defective vectors. However, for reasons of safety, there is a need to restrict viral replication both spatially, by limiting replication to certain cell types, and temporally. To control replication temporally, we have developed a system, based on the small-molecule dimerizer rapamycin, for regulating the replication of adenoviral vectors.

View Article and Find Full Text PDF