Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of β-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the β-lactoglobulin adsorption and its effect on the premix membrane emulsification of β-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed β-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of β-lactoglobulin) and the treatment of the silica surface (hydrophilization).
View Article and Find Full Text PDFHypothesis: High hydrostatic pressure treatment causes structural changes in interfacial-active β-lactoglobulin (β-lg). We hypothesized that the pressure-induced structural changes affect the intra- and intermolecular interactions which determine the interfacial activity of β-lg. The conducted experimental and numerical investigations could contribute to the mechanistic understanding of the adsorption behavior of proteins in food-related emulsions.
View Article and Find Full Text PDFKnowledge about the critical interfacial concentration of a protein supports our understanding of the kinetic stability of an emulsion. Its determination is currently limited to either invasive or indirect methods. The aim of our study was the determination of the critical interfacial concentration of whey protein β-lactoglobulin at oil/water-interfaces through fluorescence and pendant drop analysis and the comparison to an in situ Fourier-transform-infrared-spectroscopy (FTIR) method.
View Article and Find Full Text PDFAmphiphilic properties enable proteins like β-lactoglobulin to stabilize oil/water-interfaces and provide stability in food-related emulsions. During emulsification, the protein undergoes three stages: (I) migration through bulk phase, (II) adsorption, and (III) interfacial rearrangement at the oil/water-interface - the kinetics of which require further research. Therefore, the aim of our study was the analytical and computational investigation of stage (I) and (II) as a function of the interfacial preoccupation, conformational state and charge of β-lactoglobulin.
View Article and Find Full Text PDF