As the global threat of plastic pollution has grown in scale and urgency, so have efforts to find sustainable and efficient solutions. Research conducted over the past few years has identified gut environments within insect larvae, including (yellow mealworms), as microenvironments uniquely suited to rapid plastic biodegradation. However, there is currently limited understanding of how the insect host and its gut microbiome collaborate to create an environment conducive to plastic biodegradation.
View Article and Find Full Text PDFAs awareness of the ubiquity and magnitude of plastic pollution has increased, so has interest in the long term fate of plastics. To date, however, the fate of potentially toxic plastic additives has received comparatively little attention. In this study, we investigated the fate of the flame retardant hexabromocyclododecane (HBCD) in polystyrene (PS)-degrading mealworms and in mealworm-fed shrimp.
View Article and Find Full Text PDFAccumulation of plastic pollution in aquatic ecosystems is the predictable result of high demand for plastic functionalities, optimized production with economies of scale, and recalcitrance. Strategies are needed for end-of-life conversion of recalcitrant plastics into useful feedstocks and for transition to materials that are biodegradable, non-bioaccumulative, and non-toxic. Promising alternatives are the polyhydroxyalkanoates (PHAs), a vast family of polymers amenable to decentralized production from renewable feedstocks.
View Article and Find Full Text PDFRecent studies have demonstrated the ability for polystyrene (PS) degradation within the gut of mealworms ( Tenebrio molitor). To determine whether plastics may be broadly susceptible to biodegradation within mealworms, we evaluated the fate of polyethylene (PE) and mixtures (PE + PS). We find that PE biodegrades at comparable rates to PS.
View Article and Find Full Text PDFCommercial production of polystyrene (PS) -a persistent plastic that is not biodegradable at appreciable rates in most environments-has led to its accumulation as a major contaminant of land, rivers, lakes, and oceans. Recently, however, an environment was identified in which PS is susceptible to rapid biodegradation: the larval gut of Tenebrio molitor Linnaeus (yellow mealworms). In this study, we evaluate PS degradation capabilities of a previously untested strain of T.
View Article and Find Full Text PDF