The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.
View Article and Find Full Text PDFIntroduction: Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes that increase myocyte energy demand and lead to cardiac hypertrophy. However, it is unknown whether a common metabolic trait underlies cardiac phenotype at the early disease stage. To address this question and define cardiac biochemical pathology in early-stage HCM, we studied two HCM mouse models that express pathogenic variants in cardiac troponin T () or myosin heavy chain () genes, and have marked differences in cardiac imaging phenotype, mitochondrial function at early disease stage.
View Article and Find Full Text PDFCystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease.
View Article and Find Full Text PDFBackground: Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear.
View Article and Find Full Text PDFObjectives: Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG).
View Article and Find Full Text PDFImmunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes.
View Article and Find Full Text PDFT cell-based immunotherapies have exhibited promising outcomes in tumor control; however, their efficacy is limited in immune-excluded tumors. Cancer-associated fibroblasts (CAFs) play a pivotal role in shaping the tumor microenvironment and modulating immune infiltration. Despite the identification of distinct CAF subtypes using single-cell RNA-sequencing (scRNA-seq), their functional impact on hindering T-cell infiltration remains unclear, particularly in soft-tissue sarcomas (STS) characterized by low response rates to T cell-based therapies.
View Article and Find Full Text PDFPurpose Of Review: The relationship between metabolism and cardiovascular diseases is complex and bidirectional. Cardiac cells must adapt metabolic pathways to meet biosynthetic demands and energy requirements to maintain contractile function. During cancer, this homeostasis is challenged by the increased metabolic demands of proliferating cancer cells.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes, that increase myocyte energy demand and lead to cardiac hypertrophy. But it is unknown whether a common metabolic trait underlies the cardiac phenotype at early disease stage. This study characterized two HCM mouse models (R92W-TnT, R403Q-MyHC) that demonstrate differences in mitochondrial function at early disease stage.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
November 2023
Several analytical challenges make it difficult to accurately measure coenzyme A (CoA) metaboforms, including insufficient stability and a lack of available metabolite standards. Consequently, our understanding of CoA biology and the modulation of human diseases may be nascent. CoA's serve as lipid precursors, energy intermediates, and mediators of post-translational modifications of proteins.
View Article and Find Full Text PDFThe developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function.
View Article and Find Full Text PDFJ Mol Cell Cardiol
October 2022
Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation.
View Article and Find Full Text PDFCardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer.
View Article and Find Full Text PDFPreeclampsia is a cardiovascular pregnancy complication characterised by new onset hypertension and organ damage or intrauterine growth restriction. It is one of the leading causes of maternal and fetal mortality in pregnancy globally. Short of pre-term delivery of the fetus and placenta, treatment options are limited.
View Article and Find Full Text PDFAlthough metabolic remodeling during cardiovascular diseases has been well-recognized for decades, the recent development of analytical platforms and mathematical tools has driven the emergence of assessing cardiac metabolism using tracers. Metabolism is a critical component of cellular functions and adaptation to stress. The pathogenesis of cardiovascular disease involves metabolic adaptation to maintain cardiac contractile function even in advanced disease stages.
View Article and Find Full Text PDFAn important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer.
View Article and Find Full Text PDFJ Mol Cell Cardiol
September 2021
Rationale: The nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) and its primary inhibitor, tuberin (TSC2), are cues for the development of cardiac hypertrophy. The phenotype of mTORC1 induced hypertrophy is unknown.
Objective: To examine the impact of sustained mTORC1 activation on metabolism, function, and structure of the adult heart.
Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 μM ouabain 100 nM blebbistatin) or chronic myocardial Na load (PLM mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic 'fingerprint'. Control (PLM), transgenic (PLM), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by Na, P, C NMR followed by H-NMR metabolomic profiling.
View Article and Find Full Text PDFRationale: Metabolic and structural remodeling is a hallmark of heart failure. This remodeling involves activation of the mTOR (mammalian target of rapamycin) signaling pathway, but little is known on how intermediary metabolites are integrated as metabolic signals.
Objective: We investigated the metabolic control of cardiac glycolysis and explored the potential of glucose 6-phosphate (G6P) to regulate glycolytic flux and mTOR activation.
Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism.
View Article and Find Full Text PDFCalcium plays an integral role to many cellular processes including contraction, energy metabolism, gene expression, and cell death. The inositol 1, 4, 5-trisphosphate receptor (IPR) is a calcium channel expressed in cardiac tissue. There are three IPR isoforms encoded by separate genes.
View Article and Find Full Text PDFBacteria have evolved multiple strategies to sense and rapidly adapt to challenging and ever-changing environmental conditions. The ability to alter membrane lipid composition, a key component of the cellular envelope, is crucial for bacterial survival and adaptation in response to environmental stress. However, the precise roles played by membrane phospholipids in bacterial physiology and stress adaptation are not fully elucidated.
View Article and Find Full Text PDFThe term cancer and the heart is readily associated with the cardiotoxicity of antineoplastic agents, such as anthracyclines or receptor tyrosine kinase inhibitors. This offers a different perspective, drawing attention to the consequences of metabolic dysregulation in cancers for energy substrate metabolism and contractile function of the heart and to common cellular strategies present in cancers and in the failing heart.
View Article and Find Full Text PDFMembrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated.
View Article and Find Full Text PDF