Publications by authors named "Anja Heyse"

Hypothesis: Disulfide bonds in proteins are strong chemical bonds forming the secondary and tertiary structure like in the dairy protein β-lactoglobulin. We hypothesize that the partial or complete removal of disulfide bonds affects the structural rearrangement of proteins caused by intra- and intermolecular interactions that in turn define the interfacial activity of proteins at oil/water interfaces. The experimental and numerical investigations contribute to the mechanistic understanding of the structure-function relationship, especially for the interfacial adsorption behavior of proteins.

View Article and Find Full Text PDF

Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of β-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the β-lactoglobulin adsorption and its effect on the premix membrane emulsification of β-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed β-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of β-lactoglobulin) and the treatment of the silica surface (hydrophilization).

View Article and Find Full Text PDF

The use of Pickering emulsions for biocatalytical applications has recently received increased attention in cases where hydrophobic reactants are involved. For process applications, knowledge of the emulsion's rheology is crucial for the fluid dynamical design of equipment and selection of operating conditions. Colloidal silica nanoparticle stabilized Pickering emulsions usually exhibit shear-thinning behavior caused by a complex particle-particle network.

View Article and Find Full Text PDF

Virus particle (VP) aggregation can have serious implications on clinical safety and efficacy of virus-based therapeutics. Typically, VP are suspended in buffers to establish defined product properties. Salts used to achieve these properties show specific effects in chemical and biological systems in a reoccurring trend known as Hofmeister series (HS).

View Article and Find Full Text PDF