The fungus could be shown to be a viable alternative for biosorption of valuable metals from solution. Fungal biomass can be obtained easily in high quantities as a waste of biofermentation processes, and used in a complex, multi-phase solution mimicking naturally occurring, mining-affected water samples. With test solution formulated after natural conditions, formation of secondary Al and Fe phases co-precipitating Ce was recorded in addition to specific biosorption of rare earth elements.
View Article and Find Full Text PDFPhytostabilisation projects for tailing dams depend on processes occurring at spatial scales of 10 m and at decadal time scales. Most experiments supporting the design and monitoring of such projects have much smaller spatial and time scales. Usually, they are only designed for one single scale.
View Article and Find Full Text PDFBelowground ecosystems are accessible by mining, where a specific microbial community can be discovered. The biodiversity of a former alum mine rich in carbon, but with a low pH of 2.6-3.
View Article and Find Full Text PDFDuring growth and senescence, fungal fruiting bodies accumulate essential and non-essential elements to different extent in their compartments. This study bases on a dataset of 32 basidiocarps of the ectomycorrhizal Lactarius pubescens sampled in a former U mining area. Statistical analyses were combined with rare earth element (REE, La-Lu) patterns to study the element distribution within sporocarp compartments and between three different age classes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2015
The commonly observed enrichment of middle rare earth elements (MREE) in water sampled in acid mine drainage (AMD)-impacted areas was found to be the result of preferential release from the widespread mineral pyrite (FeS2). Three different mining-impacted sites in Europe were sampled for water, and various pyrite samples were used in batch experiments with diluted sulphuric acid simulating AMD-impacted water with high sulphate concentration and high acidity. All water samples independent on their origin from groundwater, creek water or lake water as well as on the surrounding rock types showed MREE enrichment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2015
Phytoremediation is an environmental friendly, cost-effective technology for a soft restoration of abandoned mine sites. The grasses Agrostis capillaris, Deschampsia flexuosa and Festuca rubra, and the annual herb Helianthus annuus were combined with microbial consortia in pot experiments on multi-metal polluted substrates collected at a former uranium mine near Ronneburg, Germany, and a historic copper mine in Kopparberg, Sweden, to test for phytoextraction versus phytostabilization abilities. Metal uptake into plant biomass was evaluated to identify optimal plant-microbe combinations for each substrate.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2015
A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.
View Article and Find Full Text PDF