Although Chimeric Antigen Receptor (CAR) T-cells have shown high efficacy in hematologic malignancies, they can cause severe to life-threatening side effects. To address these safety concerns, we have developed adaptor CAR platforms, like the UniCAR system. The redirection of UniCAR T-cells to target cells relies on a Target Module (TM), containing the E5B9 epitope and a tumor-specific binding moiety.
View Article and Find Full Text PDFDiscussed are two picolinate appended bispidine ligands (3,7-diazabicyclo[3.3.1]nonane derivatives) in comparison with an earlier described bis-pyridine derivative, which are all known to strongly bind Cu.
View Article and Find Full Text PDFBone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm's tumor protein 1 (WT1) and tyrosine-protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion.
View Article and Find Full Text PDFDespite the success of chimeric antigen receptor (CAR) T-cells especially for treating hematological malignancies, critical drawbacks, such as "on-target, off-tumor" toxicities, need to be addressed to improve safety in translating to clinical application. This is especially true, when targeting tumor-associated antigens (TAAs) that are not exclusively expressed by solid tumors but also on hea9lthy tissues. To improve the safety profile, we developed switchable adaptor CAR systems including the RevCAR system.
View Article and Find Full Text PDFBackground: Chimeric antigen receptor (CAR) T-cells are a promising approach in cancer immunotherapy, particularly for treating hematologic malignancies. Yet, their effectiveness is limited when tackling solid tumors, where immune cell infiltration and immunosuppressive tumor microenvironments (TME) are major hurdles. Fibroblast activation protein (FAP) is highly expressed on cancer-associated fibroblasts (CAFs) and various tumor cells, playing an important role in tumor growth and immunosuppression.
View Article and Find Full Text PDFCalcified aortic valve disease in its final stage leads to aortic valve stenosis, limiting cardiac function. To date, surgical intervention is the only option for treating calcific aortic valve stenosis. This study combined controlled drug delivery by nanoparticles (NPs) and active targeting by antibody conjugation.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells.
View Article and Find Full Text PDFProstate specific membrane antigen (PSMA) is an excellent target for imaging and treatment of prostate carcinoma (PCa). Unfortunately, not all PCa cells express PSMA. Therefore, alternative theranostic targets are required.
View Article and Find Full Text PDFNoninvasive molecular imaging of the PD-1/PD-L1 immune checkpoint is of high clinical relevance for patient stratification and therapy monitoring in cancer patients. Here we report nine small-molecule PD-L1 radiotracers with solubilizing sulfonic acids and a linker-chelator system, designed by molecular docking experiments and synthesized according to a new, convergent synthetic strategy. Binding affinities were determined both in cellular saturation and real-time binding assay (LigandTracer), revealing dissociation constants in the single digit nanomolar range.
View Article and Find Full Text PDFGlioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects.
View Article and Find Full Text PDFThe cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib is an emerging cancer therapeutic that just recently gained Food and Drug Administration approval for treatment of estrogen receptor (ER)-positive, human epidermal growth factor receptor (Her)2-negative breast cancer in combination with the ER degrader fulvestrant. However, CDK4/6 inhibitors are not cancer-specific and may affect also other proliferating cells. Given the importance of T cells in antitumor defense, we studied the influence of palbociclib/fulvestrant on human CD3+ T cells and novel emerging T cell-based cancer immunotherapies.
View Article and Find Full Text PDFDetection of antigens and antibodies (Abs) is of great importance in determining the infection and immunity status of the population, as they are key parameters guiding the handling of pandemics. Current point-of-care (POC) devices are a convenient option for rapid screening; however, their sensitivity requires further improvement. We present an interdigitated gold nanowire-based impedance nanobiosensor to detect COVID-19-associated antigens (receptor-binding domain of S1 protein of the SARS-CoV-2 virus) and respective Abs appearing during and after infection.
View Article and Find Full Text PDFRadiation of tumor cells can lead to the selection and outgrowth of tumor escape variants. As radioresistant tumor cells are still sensitive to retargeting of T cells, it appears promising to combine radio- with immunotherapy keeping in mind that the radiation of tumors favors the local conditions for immunotherapy. However, radiation of solid tumors will not only hit the tumor cells but also the infiltrated immune cells.
View Article and Find Full Text PDFChimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough therapy for hematological malignancies. Despite their success, clinical experience has revealed several challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens, should be considered to further improve CAR T-cell therapy for B-ALL.
View Article and Find Full Text PDFDue to its overexpression on the surface of prostate cancer (PCa) cells, the prostate stem cell antigen (PSCA) is a potential target for PCa diagnosis and therapy. Here we describe the development and functional characterization of a novel IgG4-based anti-PSCA antibody (Ab) derivative (anti-PSCA IgG4-TM) that is conjugated with the chelator DOTAGA. The anti-PSCA IgG4-TM represents a multimodal immunotheranostic compound that can be used (i) as a target module (TM) for UniCAR T cell-based immunotherapy, (ii) for diagnostic positron emission tomography (PET) imaging, and (iii) targeted alpha therapy.
View Article and Find Full Text PDFMost patients with head and neck squamous cell carcinomas (HNSCC) are diagnosed at a locally advanced stage and show heterogeneous treatment responses. Low (solute carrier family 3 member 2) mRNA and protein (CD98hc) expression levels are associated with higher locoregional control in HNSCC patients treated with primary radiochemotherapy or postoperative radiochemotherapy, suggesting that CD98hc could be a target for HNSCC radiosensitization. One of the targeted strategies for tumor radiosensitization is precision immunotherapy, e.
View Article and Find Full Text PDFImmunotherapy using CAR-T cells is a new technological paradigm for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field-effect transistors are used to develop target modules for an optimized CAR-T cell operation.
View Article and Find Full Text PDFDendritic cells (DCs) play a key role in the orchestration of antitumor immunity. Activated DCs efficiently enhance antitumor effects mediated by natural killer cells and T lymphocytes. Conversely, tolerogenic DCs essentially contribute to an immunosuppressive tumor microenvironment.
View Article and Find Full Text PDFThe anti-La mab 312B, which was established by hybridoma technology from human-La transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody. During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the framework regions.
View Article and Find Full Text PDFClinical translation of novel immunotherapeutic strategies such as chimeric antigen receptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges include immune escape and disease relapse demanding for further improvements in CAR design. To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor Reverse (Rev) CAR platform.
View Article and Find Full Text PDFDecades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress.
View Article and Find Full Text PDF