Background: Enamel matrix derivative (EMD) is an effective biomaterial for periodontal tissue regeneration and might stimulate angiogenesis. Tyrosine-rich amelogenin peptide (TRAP) is present in EMD and is thought to contribute in its biological activity. In the present study, we investigated the effect of chemically synthesized TRAP on proliferation, migration, angiogenic structure formation, and differentiation of human umbilical vein endothelial cells (HUVECs) in vitro.
View Article and Find Full Text PDFObjectives: Enamel matrix derivative (EMD) is an effective biomaterial for periodontal tissue regeneration and might stimulate angiogenesis. In order to clarify mechanisms underlying its biological activity, we separated two EMD fractions with different molecular weight protein components and investigated their effects on human umbilical vein endothelial cells (HUVECs) in vitro.
Methods: Fraction Low-Molecular Weight (LMW) included proteins with a molecular weight (M.
Enamel matrix derivative (EMD), an extract of fetal porcine enamel, and TGF-β can both suppress adipogenic differentiation. However, there have been no studies that functionally link the role of EMD and TGF-β in vitro. Herein, we examined whether TGF-β signaling contributes to EMD-induced suppression of adipogenic differentiation.
View Article and Find Full Text PDFEnamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD.
View Article and Find Full Text PDFBackground: Although enamel matrix derivative (EMD) has demonstrated the ability to promote angiogenesis and osteogenesis both in vitro and in vivo, the specific elements within the EMD compound responsible for these effects remain unknown.
Methods: Nine different protein pools from a commercially produced EMD were collected based on molecular weight. Six of these pools, along with the complete EMD unfractionated compound and positive and negative controls, were tested for their ability to induce bone formation in a calvarial induction assay.
Objective: i) To test whether or not pH modifications of a PEG hydrogel matrix influence degradation time and bone regeneration in acute and unprepared (chronic) defects; and ii) to test whether or not the addition of a PEG hydrogel to hydroxyapatite/tricalciumphosphate (HA/TCP) can further enhance bone regeneration compared to HA/TCP alone in acute defects.
Materials And Methods: In 11 mini-pigs, three acute standardized defects and one chronic site were prepared in each hemi-mandible. The following treatment modalities were applied in acute defects: PEG hydrogel regular (PEG 8.
Objectives: Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials.
Aims: This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells.
Background: Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells.
View Article and Find Full Text PDFBackground: Enamel matrix derivative (EMD), the active component of Emdogain®, is a viable option in the treatment of periodontal disease owing to its ability to regenerate lost tissue. It is believed to mimic odontogenesis, though the details of its functioning remain the focus of current research.
Objective: The aim of this article is to review all relevant literature reporting on the composition/characterization of EMD as well as the effects of EMD, and its components amelogenin and ameloblastin, on the behavior of various cell types in vitro.
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points.
View Article and Find Full Text PDFShort-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels.
View Article and Find Full Text PDFThe ND5 component of the respiratory complex I is a large, hydrophobic subunit encoded by the mitochondrial genome. Its bacterial homologue, the NDH-1 subunit NuoL, acts as a cation transporter in the absence of other NDH-1 subunits. Mutations in human ND5 are frequently observed in neurodegenerative diseases.
View Article and Find Full Text PDFThe NADH dehydrogenase I from Escherichia coli is a bacterial homolog of the mitochondrial complex I which translocates Na(+) rather than H(+). To elucidate the mechanism of Na(+) transport, the C-terminally truncated NuoL subunit (NuoL(N)) which is related to Na(+)/H(+) antiporters was expressed as a protein A fusion protein (ProtA-NuoL(N)) in the yeast Saccharomyces cerevisiae which lacks an endogenous complex I. The fusion protein inserted into membranes from the endoplasmatic reticulum (ER), as confirmed by differential centrifugation and Western analysis.
View Article and Find Full Text PDFThe respiratory NADH:quinone oxidoreductase (complex I) (NDH-1) is a multisubunit enzyme that translocates protons (or in some cases Na+) across energy-conserving membranes from bacteria or mitochondria. We studied the reaction of the Na+-translocating complex I from the enterobacterium Klebsiella pneumoniae with N,N'-dicyclohexylcarbodiimide (DCCD), with the aim of identifying a subunit critical for Na+ binding. At low Na+ concentrations (0.
View Article and Find Full Text PDFThere is considerable current interest in molecules that bind intra- or extracellular protein surfaces and inhibit protein-protein interactions. Previously we have reported that miniature proteins based on pancreatic-fold polypeptides can recognize even shallow alpha-helix binding clefts with high affinity and selectivity against unrelated proteins. One such miniature protein, PPBH3-1, binds the anti-apoptotic protein paralogs Bcl-2 and Bcl-XL with nanomolar affinity and a DeltaDeltaG = 1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2003
We show here sodium ion cycling between complex I from Klebsiella pneumoniae and the F(1)F(0) ATP synthase from Ilyobacter tartaricus in a reconstituted proteoliposome system. In the course of NADH oxidation by complex I, an electrochemical sodium ion gradient was established and served as a driving force for the synthesis of ATP from ADP and phosphate. In the opposite direction, the deltamu(Na(+)) generated by ATP hydrolysis could be coupled to NADH formation by reversed electron transfer from ubiquinol to NAD.
View Article and Find Full Text PDFThe electrogenic NADH:Q oxidoreductase from the enterobacterium Klebsiella pneumoniae transports Na(+) ions. The complex was purified with an increase of the specific Na(+) transport activity from 0.2 micromol min(-1) mg(-1) in native membrane vesicles to 4.
View Article and Find Full Text PDF