Maternal consumption of polyphenol-rich foods has been associated with fetal ductus arteriosus constriction (DAC), but safety of chocolate exposure in fetal life has not been studied. This experimental study tested the hypothesis that maternal cocoa consumption in late pregnancy causes fetal DAC, with possible associated antioxidant effects. Pregnant Wistar rats, at the 21st gestational day, received by orogastric tube cocoa (720 mg/Kg) for 12 h, indomethacin (10 mg/Kg), for 8 h, or only water, before cesaren section.
View Article and Find Full Text PDFUnlabelled: Hyperglycemia induces oxidative stress and thereby may exacerbate β-cell dysfunction in type 2 diabetes (T2DM). Notably, glutathione (GSH), synthesized from N-Acetylcysteine (NAC), neutralizes reactive oxygen species within cells and is low in individuals with diabetes.
Aim: Determine if NAC supplementation improves β-cell function and glucose tolerance by decreasing oxidative stress in T2DM.
Purpose: We sought to determine the effects of dietary fat on insulin sensitivity and whether changes in insulin sensitivity were explained by changes in abdominal fat distribution or very low-density lipoprotein (VLDL) fatty acid composition.
Methods: Overweight/obese adults with normal glucose tolerance consumed a control diet (35 % fat/12 % saturated fat/47 % carbohydrate) for 10 days, followed by a 4-week low-fat diet (LFD, n = 10: 20 % fat/8 % saturated fat/62 % carbohydrate) or high-fat diet (HFD, n = 10: 55 % fat/25 % saturated fat/27 % carbohydrate). All foods and their eucaloric energy content were provided.
Diabetol Metab Syndr
June 2015
The HSD11B1 gene is highly expressed in abdominal adipose tissue, and the enzyme it encodes catalyzes the interconversion of inactive cortisone to hormonally active cortisol. Genetic abnormalities of HSD11B1 have been associated with the development of abnormal glucose metabolism and body fat distribution. To systematically review studies evaluating the association of HSD11B1 gene expression in abdominal adipose tissue and HSD11B1 polymorphisms with obesity, the metabolic syndrome (MetS), and type 2 diabetes (T2DM), we conducted a search in MEDLINE, SCOPUS, and Cochrane Library databases in April 2015.
View Article and Find Full Text PDFDietary fat and oxidative stress are hypothesized to contribute to non-alcoholic fatty liver disease and progression to steatohepatitis. To determine the effects of dietary fat content on hepatic triglyceride, body fat distribution and markers of inflammation and oxidative stress, overweight/obese subjects with normal glucose tolerance consumed a control diet (CONT: 35% fat/12% saturated fat/47% carbohydrate) for ten days, followed by four weeks on a low fat (LFD (n = 10): 20% fat/8% saturated fat/62% carbohydrate) or high fat diet (HFD (n = 10): 55% fat/25% saturated fat/27% carbohydrate). Hepatic triglyceride content was quantified by MRS and abdominal fat distribution by MRI.
View Article and Find Full Text PDFDifferent dietary interventions have been identified as potential modifiers of adiponectin concentrations, and they may be influenced by lipid intake. We identified studies investigating the effect of dietary lipids (type/amount) on adiponectin concentrations in a systematic review with meta-analysis. A literature search was conducted until July 2013 using databases such as Medline, Embase and Scopus (MeSH terms: 'adiponectin', 'dietary lipid', 'randomized controlled trials (RCT)').
View Article and Find Full Text PDFBackground: Adiponectin is a major regulator of glucose and lipid homeostasis by its insulin sensitizer properties. Since decreased insulin sensitivity is linked to metabolic syndrome (MS), decreased adiponectin levels may be related to its development. The purpose of the study was to investigate the relationship between adiponectin levels and MS.
View Article and Find Full Text PDF