Publications by authors named "Anita Y H Lee"

Article Synopsis
  • MK-0616 is a newly developed oral PCSK9 inhibitor that raises hope for an alternative to injectable treatments, following nearly 20 years of research without an effective oral option.* -
  • Using advanced mRNA display screening and structured drug design, MK-0616 was shown to effectively lower PCSK9 levels and significantly reduce LDL cholesterol in clinical trials.* -
  • The trials indicated that MK-0616 has a strong affinity for PCSK9 and demonstrated promising safety and efficacy, suggesting it could be a game changer in cholesterol management.*
View Article and Find Full Text PDF

Glucagon (GCG) acutely stimulates energy expenditure (EE) and hepatic glucose production (HGP) in humans, but whether these effects persist during hyperglucagonemia of longer duration is unclear. Using a prospective, randomized, single-blind, crossover study design, we therefore measured EE and rates of glucose appearance (glucose RA) during three separate infusion protocols in healthy lean males: A) 10-h overnight GCG infusion (6 ng/[kg × min]) followed by 3-h infusion of GCG, octreotide (OCT), and insulin (INS) for basal replacement; B) overnight saline (SAL) infusion followed by GCG/OCT/INS infusion; and C) overnight SAL infusion followed by SAL/OCT/INS infusion. Sleep EE, measured at 6 to 7 h of the overnight infusion, was increased 65-70 kcal/24 h in A compared with B and C.

View Article and Find Full Text PDF

Background: Proglucagon-derived peptides (PGDPs), which include glucagon-like peptide (GLP)-1, glucagon, and oxyntomodulin, are key regulators of glucose homeostasis and satiety. These peptide hormones are typically measured with immuno-based assays (e.g.

View Article and Find Full Text PDF

Disease modifying treatments for Alzheimer's disease (AD) constitute a major goal in medicine. Current trends suggest that biomarkers reflective of AD neuropathology and modifiable by treatment would provide supportive evidence for disease modification. Nevertheless, a lack of quantitative tools to assess disease modifying treatment effects remains a major hurdle.

View Article and Find Full Text PDF

Background: For a more complete understanding of pharmacodynamic, metabolic, and pathophysiologic effects, protein kinetics, such as production rate and fractional catabolic rate, can offer substantially more information than protein concentration alone. Kinetic experiments with stable isotope tracers typically require laborious sample preparation and are most often used for studying abundant proteins. Here we describe a practical methodology for measuring isotope enrichment into low-abundance proteins that uses an automated procedure and immunoaffinity enrichment (IA) with LC-MS.

View Article and Find Full Text PDF

Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form.

View Article and Find Full Text PDF

Background: Current approaches to measure protein turnover that use stable isotope-labeled tracers via GC-MS are limited to a small number of relatively abundant proteins. We developed a multiplexed liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM) assay to measure protein turnover and compared the fractional synthetic rates (FSRs) for 2 proteins, VLDL apolipoprotein B100 (VLDL apoB100) and HDL apoA-I, measured by both methods. We applied this technique to other proteins for which kinetics are not readily measured with GC-MS.

View Article and Find Full Text PDF

The rapid identification of protein biomarkers in biofluids is important to drug discovery and development. Here, we describe a general proteomic approach for the discovery and identification of proteins that exhibit a statistically significant difference in abundance in cerebrospinal fluid (CSF) before and after pharmacological intervention. This approach, differential mass spectrometry (dMS), is based on the analysis of full scan mass spectrometry data.

View Article and Find Full Text PDF

Inhibitors of class 1 and class 2 histone deacetylase (HDAC) enzymes have shown antitumor activity in human clinical trials. More recently, there has been interest in developing subtype-selective HDAC inhibitors designed to retain anticancer activity while reducing potential side effects. Efforts have been initiated to selectively target HDAC1 given its role in tumor proliferation and survival.

View Article and Find Full Text PDF