The fungal pathogen Cryptococcus neoformans causes approximately one million cases of cryptococcosis per year in people with AIDS. In contrast, the related species C. gattii is responsible for a much smaller number of cases, but these often occur in immunocompetent people.
View Article and Find Full Text PDFThe pathogenic fungus Cryptococcus neoformans generally initiates infection in mammalian lung tissue and subsequently disseminates to the brain. We performed serial analysis of gene expression (SAGE) on C. neoformans cells recovered from the lungs of mice and found elevated expression of genes for central carbon metabolism including functions for acetyl-CoA production and utilization.
View Article and Find Full Text PDFBackground: Genome variability can have a profound influence on the virulence of pathogenic microbes. The availability of genome sequences for two strains of the AIDS-associated fungal pathogen Cryptococcus neoformans presented an opportunity to use comparative genome hybridization (CGH) to examine genome variability between strains of different mating type, molecular subtype, and ploidy.
Results: Initially, CGH was used to compare the approximately 100 kilobase MATa and MATalpha mating-type regions in serotype A and D strains to establish the relationship between the Log2 ratios of hybridization signals and sequence identity.
The level of available iron in the mammalian host is extremely low, and pathogenic microbes must compete with host proteins such as transferrin for iron. Iron regulation of gene expression, including genes encoding iron uptake functions and virulence factors, is critical for the pathogenesis of the fungus Cryptococcus neoformans. In this study, we characterized the roles of the CFT1 and CFT2 genes that encode C.
View Article and Find Full Text PDFA defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase A (PKA) is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis.
View Article and Find Full Text PDFAntimicrob Agents Chemother
May 2007
Microbial amino acid biosynthesis is a proven yet underexploited target of antibiotics. The biosynthesis of methionine in particular has been shown to be susceptible to small-molecule inhibition in fungi. The first committed step in Met biosynthesis is the acylation of homoserine (Hse) by the enzyme homoserine transacetylase (HTA).
View Article and Find Full Text PDFThe mechanisms by which pathogens sense and transport iron are important during infection, because of the low availability of free iron in the mammalian host. Iron is a key nutritional cue for the pathogen Cryptococcus neoformans, because it influences expression of the polysaccharide capsule that is the major virulence factor of the fungus. In this study, C.
View Article and Find Full Text PDFIron overload is known to exacerbate many infectious diseases, and conversely, iron withholding is an important defense strategy for mammalian hosts. Iron is a critical cue for Cryptococcus neoformans because the fungus senses iron to regulate elaboration of the polysaccharide capsule that is the major virulence factor during infection. Excess iron exacerbates experimental cryptococcosis and the prevalence of this disease in Sub-Saharan Africa has been associated with nutritional and genetic aspects of iron loading in the background of the HIV/AIDS epidemic.
View Article and Find Full Text PDFWe recently reported that SHIP restrains LPS-induced classical (M1) activation of in vitro differentiated, bone marrow-derived macrophages (BMMPhis) and that SHIP upregulation is essential for endotoxin tolerance. Herein, we show that in vivo differentiated SHIP-/- peritoneal (PMPhis) and alveolar (AMPhis) macrophages, unlike their wild-type counterparts, are profoundly M2 skewed (alternatively activated), possessing constitutively high arginase I (ArgI) and Ym1 levels and impaired LPS-induced NO production. Consistent with this, SHIP-/- mice display M2-mediated lung pathology and enhanced tumor implant growth.
View Article and Find Full Text PDF