Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions.
View Article and Find Full Text PDFAn oligomannose patch around the V3 base of HIV-1 envelope glycoprotein (Env) is recognized by multiple classes of broadly neutralizing antibodies (bNAbs). Here, we investigated the bNAb response to the V3 glycan supersite in an HIV-1-infected Chinese donor by Env-specific single B cell sorting, structural and functional studies, and longitudinal analysis of antibody and virus repertoires. Monoclonal antibodies 438-B11 and 438-D5 were isolated that potently neutralize HIV-1 with moderate breadth, are encoded by the V1-69 germline gene, and have a disulfide-linked long HCDR3 loop.
View Article and Find Full Text PDFThe association between active smoking and wound healing in critical limb ischemia (CLI) is unknown. Our objective was to examine in a retrospective cohort study whether active smoking is associated with higher incomplete wound healing rates in patients with CLI undergoing endovascular interventions. Smoking status was assessed at the time of the intervention, comparing active to no active smoking, and also during follow-up visits at 6 and 9 months.
View Article and Find Full Text PDFThe fusion peptide (FP) of HIV-1 envelope glycoprotein (Env) is essential for mediating viral entry. Detection of broadly neutralizing antibodies (bnAbs) that interact with the FP has revealed it as a site of vulnerability. We delineate X-ray and cryo-electron microscopy (cryo-EM) structures of bnAb ACS202, from an HIV-infected elite neutralizer, with an FP and with a soluble Env trimer (AMC011 SOSIP.
View Article and Find Full Text PDFThe N-terminal fusion peptide (FP) of the human immunodeficiency virus (HIV)-1 envelope glycoprotein (Env) gp41 subunit plays a critical role in cell entry. However, capturing the structural flexibility in the unbound FP is challenging in the native Env trimer. Here, FP conformational isomerism is observed in two crystal structures of a soluble clade B transmitted/founder virus B41 SOSIP.
View Article and Find Full Text PDFOvercoming envelope metastability is crucial to trimer-based HIV-1 vaccine design. Here, we present a coherent vaccine strategy by minimizing metastability. For 10 strains across five clades, we demonstrate that the gp41 ectodomain (gp41) is the main source of envelope metastability by replacing wild-type gp41 with BG505 gp41 of the uncleaved prefusion-optimized (UFO) design.
View Article and Find Full Text PDFTraditional vaccine development to prevent some of the worst current pandemic diseases has been unsuccessful so far. Germline-targeting immunogens have potential to prime protective antibodies (Abs) via more targeted immune responses. Success of germline-targeting vaccines in humans will depend on the composition of the human naive B cell repertoire, including the frequencies and affinities of epitope-specific B cells.
View Article and Find Full Text PDFVaccines targeting glycan structures at the surface of pathogenic microbes must overcome the inherent T cell-independent nature of immune responses against glycans. Carbohydrate conjugate vaccines achieve this by coupling bacterial polysaccharides to a carrier protein that recruits heterologous CD4 T cells to help B cell maturation. Yet they most often produce low- to medium-affinity immune responses of limited duration in immunologically fit individuals and disappointing results in the elderly and immunocompromised patients.
View Article and Find Full Text PDFAmong broadly neutralizing antibodies to HIV, 10E8 exhibits greater neutralizing breadth than most. Consequently, this antibody is the focus of prophylactic/therapeutic development. The 10E8 epitope has been identified as the conserved membrane proximal external region (MPER) of gp41 subunit of the envelope (Env) viral glycoprotein and is a major vaccine target.
View Article and Find Full Text PDFInduction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown.
View Article and Find Full Text PDFAn optimal HIV vaccine should induce broadly neutralizing antibodies (bnAbs) that neutralize diverse viral strains and subtypes. However, potent bnAbs develop in only a small fraction of HIV-infected individuals, all contain rare features such as extensive mutation, insertions, deletions, and/or long complementarity-determining regions, and some are polyreactive, casting doubt on whether bnAbs to HIV can be reliably induced by vaccination. We engineered two potent VRC01-class bnAbs that minimized rare features.
View Article and Find Full Text PDFThe dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region.
View Article and Find Full Text PDFInduction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses.
View Article and Find Full Text PDFNumerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions.
View Article and Find Full Text PDFThe present study reports a comprehensive nuclear magnetic resonance (NMR) characterization and a systematic conformational sampling of the conformational preferences of 170 glycan moieties of glycosphingolipids as produced in large-scale quantities by bacterial fermentation. These glycans span across a variety of families including the blood group antigens (A, B and O), core structures (Types 1, 2 and 4), fucosylated oligosaccharides (core and lacto-series), sialylated oligosaccharides (Types 1 and 2), Lewis antigens, GPI-anchors and globosides. A complementary set of about 100 glycan determinants occurring in glycoproteins and glycosaminoglycans has also been structurally characterized using molecular mechanics-based computation.
View Article and Find Full Text PDFThe present work describes, in a detailed way, a family of databases covering the three-dimensional features of monosaccharides, disaccharides, oligosaccharides, polysaccharides, glycosyltransferases, lectins, monoclonal antibodies against carbohydrates, and glycosaminoglycan-binding proteins. These databases have been developed with non-proprietary software, and they are open freely to the scientific community. They are accessible through the common portal called "Glyco3D" http://www.
View Article and Find Full Text PDFRecent advances in glycobiology revealed the essential role of lectins for deciphering the glycocode by specific recognition of carbohydrates. Integrated multiscale approaches are needed for characterizing lectin specificity: combining on one hand high-throughput analysis by glycan array experiments and systematic molecular docking of oligosaccharide libraries and on the other hand detailed analysis of the lectin/oligosaccharide interaction by x-ray crystallography, microcalorimetry and free energy calculations. The lectins LecB from Pseudomonas aeruginosa and BambL from Burkholderia ambifaria are part of the virulence factors used by the pathogenic bacteria to invade the targeted host.
View Article and Find Full Text PDFEscherichia coli serogroup O5 comprises two different subgroups (O5ab and O5ac), which are indiscernible from the point of view of standard immunological serotyping. The structural similarities between the O-antigen polysaccharides (PSs) of these two strains are remarkable, with the only difference being the glycosidic linkage connecting the biological tetrasaccharide repeating units. In the present study, a combination of NMR spectroscopy and molecular modeling methods were used to elucidate the conformational preferences of these two PSs.
View Article and Find Full Text PDFBMC Bioinformatics
November 2012
Background: Polysaccharides are ubiquitously present in the living world. Their structural versatility makes them important and interesting components in numerous biological and technological processes ranging from structural stabilization to a variety of immunologically important molecular recognition events. The knowledge of polysaccharide three-dimensional (3D) structure is important in studying carbohydrate-mediated host-pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine development as well as material science applications or production of bio-ethanol.
View Article and Find Full Text PDFBMC Bioinformatics
February 2011
Background: Guanine protein-coupled receptors (GPCRs) constitute a eukaryotic transmembrane protein family and function as "molecular switches" in the second messenger cascades and are found in all organisms between yeast and humans. They form the single, biggest drug-target family due to their versatility of action and their role in several physiological functions, being active players in detecting the presence of light, a variety of smells and tastes, amino acids, nucleotides, lipids, chemicals etc. in the environment of the cell.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
June 2010
Engineering zinc finger protein motifs for specific DNA targets in genomes is critical in the field of genome engineering. We have developed a computational method for predicting recognition helices for C2H2 zinc fingers that bind to specific target DNA sites. This prediction is based on artificial neural network using an exhaustive dataset of zinc finger proteins and their target DNA triplets.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2009
Understanding alpha-synuclein in terms of fibrillization, aggregation, solubility and stability is fundamental in Parkinson's disease (PD). The three familial mutations, namely, A30P, E46K and A53T cause PD because the hydrophobic regions in alpha-synuclein acquire beta-sheet configuration, and have a propensity to fibrillize and form amyloids that cause cytotoxicity and neurodegeneration. On simulating the native form and mutants (A30P, E46K and A53T) of alpha-synuclein in water solvent, clear deviations are observed in comparison to the all-helical 1XQ8 PDB structure.
View Article and Find Full Text PDF