Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of and mutations in many types of human cancer.
View Article and Find Full Text PDFThe regenerative capacity of hematopoietic stem cells (HSCs) is limited by the accumulation of DNA damage. Conditional mutagenesis of the histone 3 lysine 4 (H3K4) methyltransferase, , revealed that it is required for the expression of DNA damage recognition and repair pathways in HSCs. Specific deletion of in adult long-term (LT) HSCs is compatible with adult life and has little effect on the maintenance of phenotypic LT-HSCs in the bone marrow.
View Article and Find Full Text PDFHistone 3 lysine 4 (H3K4) methylation is a universal epigenetic mark. In mammals, there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of Set1: Setd1a and Setd1b. Here we show that mouse Setd1a is required for gastrulation, whereas Setd1b-deficient embryos survive to E11.
View Article and Find Full Text PDFThe mouse mammary gland is the only epithelial organ capable of complete regeneration upon orthotopic transplantation, making it ideally suited for in vivo gene function studies through viral-mediated gene delivery. A hurdle that has challenged the widespread adoption of this technique has been the inability to transduce mammary stem cells effectively. We have overcome this limitation by infecting total primary mammary epithelial cells in suspension with high-titer lentiviruses.
View Article and Find Full Text PDFRecent genomic data indicate that RNA polymerase II (Pol II) function extends beyond conventional transcription of primarily protein-coding genes. Among the five snRNAs required for pre-mRNA splicing, only the U6 snRNA is synthesized by RNA polymerase III (Pol III). Here we address the question of how Pol II coordinates the expression of spliceosome components, including U6.
View Article and Find Full Text PDF