Publications by authors named "Anita Puranik"

Avian influenza virus (AIV) subtypes H5 and H7 are capable of mutating from low to high pathogenicity strains, causing high mortality in poultry with significant economic losses globally. During 2015, two outbreaks of H7N7 low pathogenicity AIV (LPAIV) in Germany, and one each in the United Kingdom (UK) and The Netherlands occurred, as well as single outbreaks of H7N7 high pathogenicity AIV (HPAIV) in Germany and the UK. Both HPAIV outbreaks were linked to precursor H7N7 LPAIV outbreaks on the same or adjacent premises.

View Article and Find Full Text PDF

A detailed veterinary and laboratory investigation revealed an unusual case of concurrent avian avulavirus type 1 (AAvV-1, formerly called avian paramyxovirus type 1) and low pathogenicity avian influenza (LPAI) virus infections of chickens during March 2010 in a mixed poultry and livestock farm in Great Britain. Respiratory signs and daily mortality of 5-6 birds in a broiler flock 8-weeks of age prompted submission of two carcasses to an Animal and Plant Health Agency (APHA) regional laboratory. Infectious bronchitis virus infection was suspected initially and virus isolation in SPF embryonated fowls' eggs was attempted at APHA-Weybridge.

View Article and Find Full Text PDF

A 12-month pilot project for notifiable avian disease (NAD) exclusion testing in chicken and turkey flocks in Great Britain (GB) offered, in partnership with industry, opportunities to carry out differential diagnosis in flocks where NAD was not suspected, and to identify undetected or undiagnosed infections. In May 2014, clinical samples received from a broiler breeder chicken premises that had been experiencing health and production problems for approximately one week tested positive by avian influenza (AI) real-time reverse transcription polymerase chain reaction (RRT-PCR). Following immediate escalation to an official, statutory investigation to rule out the presence of notifiable AI virus (AIV; H5 or H7 subtypes), a non-notifiable H4N6 low pathogenicity (LP) AIV was detected through virus isolation in embryonated specific pathogen free (SPF) fowls' eggs, neuraminidase inhibition test, cleavage site sequencing and AIV subtype H4-specific serology.

View Article and Find Full Text PDF
Article Synopsis
  • Wild ducks and gulls serve as primary reservoirs for avian influenza A viruses (AIVs), with their evolution influenced by environmental factors where various species interact.
  • The Republic of Georgia, situated at a crucial migratory crossroads, was studied from 2010 to 2016, revealing diverse subtypes of AIV, including both low-pathogenic and highly pathogenic ones.
  • Genetic analyses showed that AIVs exhibited host-specific lineages and varying rates of gene reassortment, highlighting both local maintenance of certain virus strains and connections to broader Eurasian and African virus populations.
View Article and Find Full Text PDF

The China-origin H7N9 low pathogenicity avian influenza virus (LPAIV) emerged as a zoonotic threat in 2013 where it continues to circulate in live poultry markets. Absence of overt clinical signs in poultry is a typical LPAIV infection outcome, and has contributed to its insidious maintenance in China. This study is the first description of H7N9 LPAIV (A/Anhui/1/13) infection in turkeys, with efficient transmission to two additional rounds of introduced contact turkeys which all became infected during cohousing.

View Article and Find Full Text PDF

In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys.

View Article and Find Full Text PDF

Unlabelled: Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species.

View Article and Find Full Text PDF