Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures.
View Article and Find Full Text PDFSignificant dehydration can increase thermoregulatory and cardiovascular strain and impair physical and cognitive performance. Despite these negative effects, there are currently no objective, non-invasive tools to monitor systemic hydration. Raman spectroscopy is an optical modality with the potential to fill this gap because it is sensitive to water, provides results quickly, and can be applied non-invasively.
View Article and Find Full Text PDFThe orientation and function of smooth muscle in the cervix may contribute to the important biomechanical properties that change during pregnancy. Thus, this study examined the three-dimensional structure, smooth muscle phenotype, and mechanical and contractile functions of the upper and lower cervix of nongravid (not pregnant) and gravid (pregnant) mice. In gravid cervix, we uncovered region-specific changes in the structure and organization of fiber tracts.
View Article and Find Full Text PDFBackground And Aims: Hepatic steatosis (HS), particularly macrovesicular steatosis (MaS), influences transplant outcomes. Accurate assessment of MaS is crucial for graft selection. While traditional assessment methods have limitations, non-invasive spectroscopic techniques like Raman and reflectance spectroscopy offer promise.
View Article and Find Full Text PDFOptical fiber Raman and surface-enhanced Raman scattering (SERS) probes hold great promise for in vivo biosensing and in situ monitoring of hostile environments. However, the silica Raman scattering background generated within the optical fiber increases in proportion to the length of the fiber, and it can swamp the signal from the target analyte. While filtering can be applied at the distal end of the fiber, the use of bulk optical elements has limited probe miniaturization to a diameter of 600 µm, which in turn limits the potential applications.
View Article and Find Full Text PDFThe native vaginal microbiome plays a crucial role in maintaining vaginal health and disruption can have significant consequences for women during their lifetime. While the composition of the vaginal microbiome is important, current methods for monitoring this community are lacking. Clinically used techniques routinely rely on subjective analysis of vaginal fluid characteristics or time-consuming microorganism culturing.
View Article and Find Full Text PDFEosinophilic esophagitis (EoE) is a chronic inflammatory condition characterized by an intense infiltration of eosinophils into the esophageal epithelium. When not adequately controlled, eosinophilic inflammation can lead to changes in components of the extracellular matrix (ECM) of the lamina propria. Particularly, alterations to the collagen fiber matrix can lead to lamina propria fibrosis (LPF), which plays an important role in the fibrostenotic complications of EoE.
View Article and Find Full Text PDFIntroduction: Biochemical alterations in the esophagus of patients with eosinophilic esophagitis (EoE) are poorly understood. We used Raman spectroscopy through a pediatric endoscope to identify key Raman features reflective of the esophageal biochemical composition to differentiate between children with EoE from non-EoE controls and between children with active (aEoE) and inactive EoE (iEoE).
Methods: Spectral measurements were obtained using a customized pediatric endoscope-compatible fiber-optic Raman probe in real time during an esophagogastroduodenoscopy.
Objective: Ultrasound is being researched as a method to modulate the brain. Studies of the interaction of sound with neurons support the hypothesis that mechanosensitive ion channels play an important role in ultrasound neuromodulation. The response of cells other than neurons (e.
View Article and Find Full Text PDFAccurate intraoperative assessment of parathyroid blood flow is crucial to preserve function postoperatively. Indocyanine green (ICG) angiography has been successfully employed, however its conventional application has limitations. A label-free method overcomes these limitations, and laser speckle contrast imaging (LSCI) is one such method that can accurately detect and quantify differences in parathyroid perfusion.
View Article and Find Full Text PDFThe need for highly sensitive, low-cost, and timely diagnostic technologies at the point of care is increasing. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is an advantageous technique to address this need, as it can rapidly detect analytes in small or dilute samples with improved sensitivity compared to conventional Raman spectroscopy. Despite the many advantages of SERS, one drawback of the technique is poor reproducibility due to variable interactions between nanoparticles and target analytes.
View Article and Find Full Text PDFThe fracture resistance of bone arises from the hierarchical arrangement of minerals, collagen fibrils (, cross-linked triple helices of α1 and α2 collagen I chains), non-collagenous proteins, and water. Raman spectroscopy (RS) is not only sensitive to the relative fractions of these constituents, but also to the secondary structure of bone proteins. To assess the ability of RS to detect differences in the protein structure, we quantified the effect of sequentially autoclaving (AC) human cortical bone at 100 °C (∼34.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2023
Since spatially offset Raman spectroscopy (SORS) can acquire biochemical measurements of tissue quality through light scattering materials, we investigated the feasibility of this technique to acquire Raman bands related to the fracture resistance of bone. Designed to maximize signals at different offsets, a SORS probe was used to acquire spectra from cadaveric bone with and without skin-like tissue phantoms attenuating the light. Autoclaving the lateral side of femur mid-shafts from 5 female and 5 male donors at 100 °C and again at 120 °C reduced the yield stress of cortical beams subjected to three-point bending.
View Article and Find Full Text PDFWe present a methodology for evaluating the performance of probe-based Raman spectroscopy systems for biomedical analysis. This procedure uses a biological standard sample and data analysis approach to circumvent many of the issues related to accurately measuring and comparing the signal quality of Raman spectra between systems. Dairy milk is selected as the biological standard due to its similarity to tissue spectral properties and because its homogeneity eliminates the dependence of probe orientation on the measured spectrum.
View Article and Find Full Text PDFPeripheral nerve damage frequently occurs in challenging surgical cases resulting in high costs and morbidity. Various optical techniques have proven effective in detecting and visually enhancing nerves, demonstrating their translational potential for assisting in nerve-sparing medical procedures. However, there is limited data characterizing the optical properties of nerves in comparison to surrounding tissues, thus limiting the optimization of optical nerve detection systems.
View Article and Find Full Text PDFIatrogenic nerve injuries contribute significantly to postoperative morbidity across various surgical disciplines and occur in approximately 500,000 cases annually in the US alone. Currently, there are no clinically adopted means to intraoperatively visualize nerves beyond the surgeon's visual assessment. Here, we report a label-free method for nerve detection using diffuse reflectance spectroscopy (DRS).
View Article and Find Full Text PDFAccelerating innovation in the space of fluorescence imaging for surgical applications has increased interest in safely and expediently advancing these technologies to clinic through Food and Drug Administration-(FDA-) compliant trials. Conventional metrics for early phase trials include drug safety, tolerability, dosing, and pharmacokinetics. Most procedural imaging technologies rely on administration of an exogenous fluorophore and concurrent use of an imaging system; both of which must receive FDA approval to proceed to clinic.
View Article and Find Full Text PDFIn surgical procedures where the risk of accidental nerve damage is prevalent, surgeons commonly use electrical stimulation (ES) during intraoperative nerve monitoring (IONM) to assess a nerve's functional integrity. ES, however, is subject to off-target stimulation and stimulation artifacts disguising the true functionality of the specific target and complicating interpretation. Lacking a stimulation artifact and having a higher degree of spatial specificity, infrared neural stimulation (INS) has the potential to improve upon clinical ES for IONM.
View Article and Find Full Text PDFBiochemical insights into varying breast cancer (BC) phenotypes can provide a fundamental understanding of BC pathogenesis, while identifying novel therapeutic targets. Raman spectroscopy (RS) can gauge these biochemical differences with high specificity. For routine RS, cells are traditionally seeded onto calcium fluoride (CaF) substrates that are costly and fragile, limiting its widespread adoption.
View Article and Find Full Text PDFJAMA Otolaryngol Head Neck Surg
March 2023
Importance: Identification and preservation of parathyroid glands (PGs) remain challenging despite advances in surgical techniques. Considerable morbidity and even mortality result from hypoparathyroidism caused by devascularization or inadvertent removal of PGs. Emerging imaging technologies hold promise to improve identification and preservation of PGs during thyroid surgery.
View Article and Find Full Text PDFOtitis media (OM) is a common disease of the middle ear, affecting 80% of children before the age of three. The otoscope, a simple illuminated magnifier, is the standard clinical diagnostic tool to observe the middle ear. However, it has limited contrast to detect signs of infection, such as clearly identifying and characterizing middle ear fluid or biofilms that accumulate within the middle ear.
View Article and Find Full Text PDF