In this study, we explore variation in resource use among Streptomyces in prairie soils. Resource use patterns were highly variable among Streptomyces isolates and were significantly related to location, phylogeny, and nitrogen (N) amendment history. Streptomyces populations from soils less than 1 m apart differed significantly in their ability to use resources, indicating that drivers of resource use phenotypes in soil are highly localized.
View Article and Find Full Text PDFVegetative compatibility (VC) is commonly used to characterize structure and diversity in fungal populations. In the chestnut blight fungus, Cryphonectria parasitica, high VC diversity is hypothesized to be responsible for the failure of hyperparasitic mycoviruses to spread through pathogen populations in North America. To test this hypothesis, we assessed VC diversity at three recovering sites in Michigan where mycoviruses had invaded and compared them with four epidemic population sites where mycoviruses were absent.
View Article and Find Full Text PDFCorrespondence between two distinct genetic traits, 16S rRNA gene sequences and repetitive element-sequence-based BOX-PCR DNA fingerprints, and antibiotic inhibition and resistance phenotypes was explored for a spatially explicit sample of Streptomyces from a prairie soil. There was no correspondence between 16S rRNA gene sequence groups and antibiotic phenotypes. However, 16S rRNA gene sequence groups differed significantly in mean inhibition zone sizes.
View Article and Find Full Text PDF