Pathological tau fibrils in progressive supranuclear palsy, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer's disease each have unique conformations, and post-translational modifications that correlate with unique disease characteristics. However, within Alzheimer's disease (AD), both fibrillar (sarkosyl insoluble (AD SARK tau)), and nonfibrillar (aqueous extractable high molecular weight (AD HMW tau)) preparations have been suggested to be seed-competent. We now explore if these preparations are similar or distinct in their in vivo seeding characteristics.
View Article and Find Full Text PDFInsoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW), due to their properties on size-exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared.
View Article and Find Full Text PDFInsoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW) due to its properties on size exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared.
View Article and Find Full Text PDFThe speed and scope of cognitive deterioration in Alzheimer's disease is highly associated with the advancement of tau neurofibrillary lesions across brain networks. We tested whether the rate of tau propagation is a heritable disease trait in a large, well-characterized cohort of genetically divergent mouse strains. Using an AAV-based model system, P301L-mutant human tau (hTau) was introduced into the entorhinal cortex of mice derived from 18 distinct lines.
View Article and Find Full Text PDF