Maps of disease burden are a core tool needed for the control and elimination of malaria. Reliable routine surveillance data of malaria incidence, typically aggregated to administrative units, is becoming more widely available. Disaggregation regression is an important model framework for estimating high resolution risk maps from aggregated data.
View Article and Find Full Text PDFDisaggregation regression has become an important tool in spatial disease mapping for making fine-scale predictions of disease risk from aggregated response data. By including high resolution covariate information and modeling the data generating process on a fine scale, it is hoped that these models can accurately learn the relationships between covariates and response at a fine spatial scale. However, validating these high resolution predictions can be a challenge, as often there is no data observed at this spatial scale.
View Article and Find Full Text PDFSeveral thousand people die every year worldwide because of terrorist attacks perpetrated by non-state actors. In this context, reliable and accurate short-term predictions of non-state terrorism at the local level are key for policy makers to target preventative measures. Using only publicly available data, we show that predictive models that include structural and procedural predictors can accurately predict the occurrence of non-state terrorism locally and a week ahead in regions affected by a relatively high prevalence of terrorism.
View Article and Find Full Text PDFBackground: Anti-malarial drugs play a critical role in reducing malaria morbidity and mortality, but their role is mediated by their effectiveness. Effectiveness is defined as the probability that an anti-malarial drug will successfully treat an individual infected with malaria parasites under routine health care delivery system. Anti-malarial drug effectiveness (AmE) is influenced by drug resistance, drug quality, health system quality, and patient adherence to drug use; its influence on malaria burden varies through space and time.
View Article and Find Full Text PDFBackground: Red blood cells are essential for modern medicine but managing their collection and supply to cope with fluctuating demands represents a major challenge. As deterministic models based on predicted population changes have been problematic, there remains a need for more precise and reliable prediction of use. Here, we develop three new time-series methods to predict red cell use 4 to 52 weeks ahead.
View Article and Find Full Text PDFBackground: Blood products are essential for modern medicine, but managing their collection and supply in the face of fluctuating demands represents a major challenge. As deterministic models based on predicted changes in population have been problematic, there remains a need for more precise and reliable prediction of demands. Here, we propose a paradigm incorporating four different time-series methods to predict red blood cell (RBC) issues 4 to 24 weeks ahead.
View Article and Find Full Text PDFBackground: Since 2000, the scale-up of malaria control interventions has substantially reduced morbidity and mortality caused by the disease globally, fuelling bold aims for disease elimination. In tandem with increased availability of geospatially resolved data, malaria control programmes increasingly use high-resolution maps to characterise spatially heterogeneous patterns of disease risk and thus efficiently target areas of high burden.
Methods: We updated and refined the Plasmodium falciparum parasite rate and clinical incidence models for sub-Saharan Africa, which rely on cross-sectional survey data for parasite rate and intervention coverage.
Background: Plasmodium vivax exacts a significant toll on health worldwide, yet few efforts to date have quantified the extent and temporal trends of its global distribution. Given the challenges associated with the proper diagnosis and treatment of P vivax, national malaria programmes-particularly those pursuing malaria elimination strategies-require up to date assessments of P vivax endemicity and disease impact. This study presents the first global maps of P vivax clinical burden from 2000 to 2017.
View Article and Find Full Text PDF