J Ocul Pharmacol Ther
September 2024
Antibody-drug conjugates (ADCs) are a relatively recent advance in the delivery of chemotherapeutics that improve targeting of cytotoxic agents. However, despite their antitumor activity, severe ocular adverse effects, including vision loss, have been reported for several ADCs. The nonspecific uptake of ADCs into human corneal epithelial cells (HCECs) and their precursors via macropinocytosis has been proposed to be the primary mechanism of ocular toxicity.
View Article and Find Full Text PDFClinical data suggest that alcohol use is associated with the development of signs and symptoms of dry eye disease. However, preclinical data investigating ocular toxicity after dietary alcohol consumption are lacking. In this study, we investigated the effects of alcohol on the ocular surface, in human corneal epithelial cells (HCE-T) and in C57BL/6JRj mice .
View Article and Find Full Text PDFParticulate matter (PM) is a primary cause for the development of acute and chronic dry eye disease, especially irritant-induced conjunctivitis. The purpose of the present study was to determine the effects of fine atmospheric PM on the rabbit ocular surface, and determine the protective effects of a synthetic antioxidant, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), and . Rabbit corneal epithelial cells (SIRC) were exposed to increasing concentrations of PM to determine the effects on cell motility and viability.
View Article and Find Full Text PDFOxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes.
View Article and Find Full Text PDFOptic nerve head astrocytes are the specialized glia cells that provide structural and trophic support to the optic nerve head. In response to cellular injury, optic nerve head astrocytes undergo reactive astrocytosis, the process of cellular activation associated with cytoskeletal remodeling, increases in the rate of proliferation and motility, and the generation of Reactive Oxygen Species. Antioxidant intervention has previously been proposed as a therapeutic approach for glaucomatous optic neuropathy, however, little is known regarding the response of optic nerve head astrocytes to antioxidants under physiological versus pathological conditions.
View Article and Find Full Text PDFPurpose: To determine the efficacy of the superoxide dismutase mimetic, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), in vitro in human corneal epithelial (HCE-T) cells and in vivo in a preclinical mouse model for dry-eye disease (DED).
Methods: In vitro, HCE-T cultures were exposed either to tert-butylhydroperoxide (tBHP) to generate oxidative stress or to hyperosmolar conditions modeling cellular stress during DED. Cells were pre-treated with Mn-TM-2-PyP or vehicle.