We demonstrate a density-dependent gauge field, induced by atomic interactions, for quantum gases. The gauge field results from the synchronous coupling between the interactions and micromotion of the atoms in a modulated two-dimensional optical lattice. As a first step, we show that a coherent shaking of the lattice in two directions can couple the momentum and interactions of atoms and break the fourfold symmetry of the lattice.
View Article and Find Full Text PDFScattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs.
View Article and Find Full Text PDFThe coupling of electrons to matter lies at the heart of our understanding of material properties such as electrical conductivity. Electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, which forms the basis for Bardeen-Cooper-Schrieffer superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate and show that the electron can excite phonons and eventually trigger a collective oscillation of the whole condensate.
View Article and Find Full Text PDF