Hydratases provide access to secondary and tertiary alcohols by regio- and/or stereospecifically adding water to carbon-carbon double bonds. Thereby, hydroxy groups are introduced without the need for costly cofactor recycling, and that makes this approach highly interesting on an industrial scale. Here we present the first crystal structure of a recombinant oleate hydratase originating from Elizabethkingia meningoseptica in the presence of flavin adenine dinucleotide (FAD).
View Article and Find Full Text PDFMembrane-anchored cytochrome P450 enzymes (CYPs) are a versatile and interesting class of enzymes for industrial applications, as they are capable of regio- and stereoselectively hydroxylating hydrophobic molecules. However, CYP activity requires sufficient levels of suitable cytochrome P450 reductases (CPRs) for regeneration of catalytic capacity, which is a bottleneck in many industrial applications. Searching for positive effectors of membrane-anchored CYP/CPR function, we transformed and screened selected strains from a Saccharomyces cerevisiae knockout collection for Hyoscyamus muticus premnaspirodiene oxygenase (HPO; CYP) and Arabidopsis thaliana CPR (AtCPR) expression levels, as well as for activity towards (+)-valencene.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2014
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins.
View Article and Find Full Text PDFThe processes of drug development require efficient strategies to produce the respective drug metabolites, which are often difficult to obtain. Biotransformations employing recombinant microorganisms as whole-cell biocatalysts have become an attractive alternative to the chemical syntheses of such metabolites. For the first time, the potential of four different microbial systems expressing the human cytochrome P450 2D6 (CYP2D6), which is one of the most important drug-metabolizing enzymes, were compared and evaluated for such applications.
View Article and Find Full Text PDF