The nucleolus is the largest biomolecular condensate and facilitates transcription, processing, and assembly of ribosomal RNA (rRNA). Although nucleolar function is thought to require multiphase liquid-like properties, nucleolar fluidity and its connection to the highly coordinated transport and biogenesis of ribosomal subunits are poorly understood. Here, we use quantitative imaging, mathematical modeling, and pulse-chase nucleotide labeling to examine nucleolar material properties and rRNA dynamics.
View Article and Find Full Text PDFDiscoveries of RNA roles in cellular physiology and pathology are increasing the need for new tools that modulate the structure and function of these biomolecules, and small molecules are proving useful. In 2017, we curated the NA-targeted oactive ligad atabase (R-BIND) and discovered distinguishing physicochemical properties of RNA-targeting ligands, leading us to propose the existence of an "RNA-privileged" chemical space. Biennial updates of the database and the establishment of a website platform (rbind.
View Article and Find Full Text PDFMany enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients.
View Article and Find Full Text PDFRecent advances in our understanding of RNA biology have uncovered crucial roles for RNA in multiple disease states, ranging from viral and bacterial infections to cancer and neurological disorders. As a result, multiple laboratories have become interested in developing drug-like small molecules to target RNA. However, this development comes with multiple unique challenges.
View Article and Find Full Text PDFSmall molecule-based modulation of a triple helix in the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been proposed as an attractive avenue for cancer treatment and a model system for understanding small molecule:RNA recognition. To elucidate fundamental recognition principles and structure-function relationships, we designed and synthesized nine novel analogs of a diphenylfuran-based small molecule DPFp8, a previously identified lead binder of MALAT1. We investigated the role of recognition modalities in binding and in silico studies along with the relationship between affinity, stability and in vitro enzymatic degradation of the triple helix.
View Article and Find Full Text PDFWhile the opportunities available for targeting RNA with small molecules have been widely appreciated, the challenges associated with achieving specific RNA recognition in biological systems have hindered progress and prevented many researchers from entering the field. To facilitate the discovery of RNA-targeted chemical probes and their subsequent applications, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND). This collection contains an array of information on reported chemical probes that target non-rRNA and have biological activity, and analysis has led to the discovery of RNA-privileged properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2018
Structural studies of the 3'-end of the oncogenic long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) confirmed a unique triple-helix structure. This structure enables accumulation of the transcript, and high levels of MALAT1 are found in several cancers. Here, we synthesize a small molecule library based on an RNA-binding scaffold, diphenylfuran (DPF), screen it against a variety of nucleic acid constructs, and demonstrate for the first time that the MALAT1 triple helix can be selectively targeted with small molecules.
View Article and Find Full Text PDFThe recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target.
View Article and Find Full Text PDF