Longitudinal animal experiments in the field of regenerative biology often require repeated use of short-term anesthesia (minutes to a few hours). Regain of consciousness limits the level of acceptable invasiveness of procedures, and it makes it difficult to untangle behavioral changes caused by injury to physiological processes involved in the regenerative response. Therefore, a method to keep a regenerative research animal in a comatose state under continuous anesthesia during regenerative experiments often spanning months, would be ethically and experimentally desirable.
View Article and Find Full Text PDFThe bulk of biomedical positron emission tomography (PET)-scanning experiments are performed on mammals (ie, rodents, pigs, and dogs), and the technique is only infrequently applied to answer research questions in ectothermic vertebrates such as fish, amphibians, and reptiles. Nevertheless, many unique and interesting physiological characteristics in these ectothermic vertebrates could be addressed in detail through PET. The low metabolic rate of ectothermic animals, however, may compromise the validity of physiological and biochemical parameters derived from the images created by PET and other scanning modalities.
View Article and Find Full Text PDFThe urodele amphibians, salamanders and newts, represent the phylogenetic group closest to mammals capable of performing complete myocardial regeneration following ventricular resection. The resection model has generated a basic knowledge of the processes involved in cardiac repair. However, the model does not relate well to clinical situations in which tissue damage, apoptosis, necrosis, fibrosis, and hypertrophy are all key detrimental consequences of ischemia-induced myocardial infarctions rather than tissue removal.
View Article and Find Full Text PDFObjective: Cardiac regeneration in the axolotl has been found to rely on the innate immune system, and especially macrophages have been demonstrated to play a vital role in regulating the regenerative process. In this study we wanted to induce a pro- and anti-inflammatory milieu in the axolotl during heart regeneration to test the resilience of the regenerative response.
Results: This was induced via repeated intrapericardial injections of lipopolysaccharide or prednisolone during a 40-day regeneration period in order to challenge the presumably fine-tuned inflammatory response that normally facilitates regeneration.
The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms.
View Article and Find Full Text PDFCardiac malfunction as a result of ischemic heart disease is a major challenge, and regenerative therapies to the heart are in high demand. A few model species such as zebrafish and salamanders that are capable of intrinsic heart regeneration hold promise for future regenerative therapies for human patients. To evaluate the outcome of cardioregenerative experiments it is imperative that heart function can be monitored.
View Article and Find Full Text PDFBackground/aims: Cardiovascular complications are common in astronauts returning from a prolonged spaceflight. These health problems might be driven by complex modulations of gene expression and protein synthesis in endothelial cells (ECs). Studies on the influence of microgravity on phenotype, growth pattern and biological processes of ECs can help to understand these complications.
View Article and Find Full Text PDFMicrogravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions.
View Article and Find Full Text PDF