Publications by authors named "Anita Devi"

Cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory pathway, is the target for various nonsteroidal anti-inflammatory drugs (NSAIDs) and selective inhibitors known as coxibs. This study focuses on the development of novel imidazole derivatives as COX-2 inhibitors, utilizing a Structure-Activity Relationship (SAR) approach to enhance binding affinity and selectivity. Molecular docking was performed using Autodock Vina, revealing binding energies of -6.

View Article and Find Full Text PDF

Piperazine functionalized Schiff bases 4(a-c) were synthesized by a condensation reaction which were thoroughly characterized by using various spectroscopic techniques like H NMR, C NMR, IR and mass spectrometry. X-ray crystallography was used to analyse synthesized compound 4b. The sensing capability of 4b was investigated towards the tetravalent form of the zirconium ion among other metal ions.

View Article and Find Full Text PDF

Herein, a 1,2,3-triazole derivative (CBT), synthesized using the Copper(i) catalyzed Alkyne Azide Cycloaddition (CuAAC) procedure, based on a chalcone skeleton has been reported, that was implemented as an effective sensor for Pb(ii) and Cu(ii) ions. The synthesized CBT was characterized using spectroscopic techniques such as FTIR, NMR (H and C), and mass spectrometry. The sensing behaviour of CBT was analyzed using UV-Vis spectroscopy, demonstrating selective sensing for Pb(ii) and Cu(ii) ions, competitively.

View Article and Find Full Text PDF

Optical trapping in biophysics typically uses micron-scale beads made of materials like polystyrene or glass to probe the target of interest. Using smaller beads made of higher-index materials could increase the time resolution of these measurements. We characterized the trapping of nanoscale beads made of diamond and titanium dioxide (TiO) in a single-beam gradient trap.

View Article and Find Full Text PDF

Metal ions have significant roles in diagnosis, industry, human health, and the environment. To design and develop new lucid molecular receptors for the selective detection of metal ions is important for environmental and medical applications. In the present work, two-armed indole appended Schiff bases conjoined with 1,2,3-Triazole bis-organosilane and bis-organosilatrane skelton sensors for naked eye colorimetric and fluorescent detection sensors for Al(III) are developed.

View Article and Find Full Text PDF

The development of a ligand for their selective and sensitive detection is required due to the widespread use of Cu in many industrial processes and the potential threat to human health. Herein, we report a bis-triazole linked organosilane (5) derived from the Cu(I) catalyzed azide-alkyne cycloaddition reaction. The synthesized compound 5 was characterized by (H and C) NMR spectroscopic and mass spectrometry techniques.

View Article and Find Full Text PDF

Metal ions have active roles in biochemical, industrial, and environmental processes. The design and development of new rapid sensing materials with advanced reasonable, compelling, and convenient, techniques are urgent. Here in this work, we design and develop sensor with the facile amalgamation of the pyrene-based organosilane (5) through a click silylation approach silicon composite for selective detection of Cu ions.

View Article and Find Full Text PDF

Chromium is essential for some biochemical processes, and excess is a big concern that shows adverse effects on human health and the environment. Therefore, it is urgent to design new sensors to detect chromium ions rapidly. The present study discusses the synthesis of piperazine conjoined 1,2,3-triazolyl-γ-propyltriethoxysilanes (4a-4b) and development of 4a as fluorescence turn-on sensor for the detection of Cr ions.

View Article and Find Full Text PDF

Using wide-field and point detection modalities, we show how optical trapping dynamics under femtosecond pulsed excitation can be explored by complementing detection of two-photon fluorescence with backscatter. Radial trajectories of trapped particles are mapped from correlated/anti-correlated fluctuations in backscatter pattern whereas temporal evolution of two-photon fluorescence is used to mark the onset of trapping involving multiple particles. Simultaneous confocal detection of backscatter and two-photon fluorescence estimates axial trap stiffness, delineating short-time trapping dynamics.

View Article and Find Full Text PDF

The present study aims to produce nanocomposites of silica based organosilane as sensitive and selective fluorescent sensor for the recognition of 2,4 dichlorophenoxyacetic acid (2,4-D). Hydrazone tethered triazole functionalized organosilane has been synthesized by the condensation reaction of 4-hydroxybenzaldehyde and phenyl hydrazine followed by Cu(I) catalysed cycloaddition of azide with alkyne. The prepared compound has been further grafted over silica surface and the synthesized materials were characterized by FT-IR, NMR (H and C), XRD, mass spectrometry and FE-SEM spectral analyses.

View Article and Find Full Text PDF

Using dipole approximation, a comparative study of trapping force/potential on different types of dielectric nanoparticles is presented. The trapping force for multilayered nanoparticles, core-shell-shell type nanoparticles, is found to be enhanced compared with both core-only type and core-shell type nanoparticles. It is shown that an appropriate choice of material and thickness of the middle layer results in tuning the polarizability, thereby playing a vital role in determining the trapping efficiency for core-shell-shell type nanoparticles.

View Article and Find Full Text PDF

Recent theoretical and experimental studies have shed light on how laser trapping dynamics under femtosecond pulsed excitation are fine-tuned by optical and thermal nonlinearities. Here, we present experimental results of trapping of single and multiple polystyrene beads (of 1 μm diameter). We show how integration and synchronization of bright-field video microscopy with confocal detection of backscatter provide both spatial and temporal resolution required to capture intricate details of nonlinear trapping dynamics.

View Article and Find Full Text PDF

Jarman-Bell (1974) hypothesized that in the dry savanna of Africa, small-bodied herbivores tend to browse more on forage with high protein and low fibre content. This implies browsing on high nutritive forage by meso-herbivores, and grazing and mixed feeding on coarse forage by mega-herbivores. We tested this hypothesis in the riverine alluvial grasslands of the Kaziranga National Park (KNP), where seasonal flood and fire play an important role in shaping the vegetation structure.

View Article and Find Full Text PDF

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc.

View Article and Find Full Text PDF

Crucial to effective optical trapping is the ability to precisely control the nature of force/potential to be attractive or repulsive. The nature of particles being trapped is as important as the role of laser parameters in determining the stability of the optical trap. In this context, hybrid particles comprising of both dielectric and metallic materials offer a wide range of new possibilities due to their tunable optical properties.

View Article and Find Full Text PDF

Association of cholesteryl ester transfer protein (CETP) Gene -629C/A Polymorphism with angiographically proven atherosclerosis CETP gene has been linked to CAD risk via its role in HDL and LDL metabolism. There is no agreement of whether CETP is atherogenic or not. Furthermore, various genotypes of CETP gene have been associated with CETP levels and thus with atherosclerosis risk.

View Article and Find Full Text PDF

The use of low-power high-repetition-rate ultrafast pulsed excitation in stable optical trapping of dielectric nanoparticles has been demonstrated in the recent past; the high peak power of each pulse leads to instantaneous trapping of a nanoparticle with fast inertial response and the high repetition-rate ensures repetitive trapping by successive pulses However, with such high peak power pulsed excitation under a tight focusing condition, nonlinear optical effects on trapping efficiency also become significant and cannot be ignored. Thus, in addition to the above mentioned repetitive instantaneous trapping, trapping efficiency under pulsed excitation is also influenced by the optical Kerr effect, which we theoretically investigate here. Using dipole approximation we show that with an increase in laser power the radial component of the trapping potential becomes progressively more stable but the axial component is dramatically modulated due to increased Kerr nonlinearity.

View Article and Find Full Text PDF