Hypovirus-infected Cryphonectria parasitica strains were introduced in a large stand of American chestnut (>4,000 individuals) in western Wisconsin (USA) to evaluate whether hypoviruses can serve as biological control agents. They were deployed by treating cankers from 1992 to 1997 and again from 2004 to 2014. After 17 years of hypovirus introductions within an area of the stand with the longest history of disease, isolation of hypovirus-infected strains increased from 55% in 1994 to 86% in 2014 from cankers that were treated.
View Article and Find Full Text PDFIn this study, we explore variation in resource use among Streptomyces in prairie soils. Resource use patterns were highly variable among Streptomyces isolates and were significantly related to location, phylogeny, and nitrogen (N) amendment history. Streptomyces populations from soils less than 1 m apart differed significantly in their ability to use resources, indicating that drivers of resource use phenotypes in soil are highly localized.
View Article and Find Full Text PDFVegetative compatibility (VC) is commonly used to characterize structure and diversity in fungal populations. In the chestnut blight fungus, Cryphonectria parasitica, high VC diversity is hypothesized to be responsible for the failure of hyperparasitic mycoviruses to spread through pathogen populations in North America. To test this hypothesis, we assessed VC diversity at three recovering sites in Michigan where mycoviruses had invaded and compared them with four epidemic population sites where mycoviruses were absent.
View Article and Find Full Text PDFTrophic interactions involving predators, herbivores, and plants have been described in terrestrial systems. However, there is almost no information on the effect of trophic interactions on microbial phyllosphere community abundance, diversity, or structure. In this study, the interaction between a parasitoid, an insect herbivore, and the fungal phyllosphere community is examined.
View Article and Find Full Text PDFCorrespondence between two distinct genetic traits, 16S rRNA gene sequences and repetitive element-sequence-based BOX-PCR DNA fingerprints, and antibiotic inhibition and resistance phenotypes was explored for a spatially explicit sample of Streptomyces from a prairie soil. There was no correspondence between 16S rRNA gene sequence groups and antibiotic phenotypes. However, 16S rRNA gene sequence groups differed significantly in mean inhibition zone sizes.
View Article and Find Full Text PDF