Small molecule degraders of small ubiquitin-related modifier 1 (SUMO1) induce SUMO1 degradation in colon cancer cells and inhibits the cancer cell growth; however, it is unclear how SUMO1 degradation leads to the anticancer activity of the degraders. Genome-wide CRISPR-Cas9 knockout screen has identified StAR-related lipid transfer domain containing 7 (StarD7) as a critical gene for the degrader's anticancer activity. Here, we show that both StarD7 mRNA and protein are overexpressed in human colon cancer and its knockout significantly reduces colon cancer cell growth and xenograft progression.
View Article and Find Full Text PDFBrain tumor–initiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs.
View Article and Find Full Text PDFGlioblastomas (GBMs) are highly aggressive, recurrent, and lethal brain tumors that are maintained via brain tumor-initiating cells (BTICs). The aggressiveness of BTICs may be dependent on the extracellular matrix (ECM) molecules that are highly enriched within the GBM microenvironment. Here, we investigated the expression of ECM molecules in GBM patients by mining the transcriptomic databases and also staining human GBM specimens.
View Article and Find Full Text PDFUbiquitination governs oscillation of cyclin-dependent kinase (CDK) activity through a periodic degradation of cyclins for orderly cell cycle progression; however, the mechanism that maintains the constant CDK protein levels throughout the cell cycle remains unclear. Here we show that CDK6 is modified by small ubiquitin-like modifier-1 (SUMO1) in glioblastoma, and that CDK6 SUMOylation stabilizes the protein and drives the cell cycle for the cancer development and progression. CDK6 is also a substrate of ubiquitin; however, CDK6 SUMOylation at Lys 216 blocks its ubiquitination at Lys 147 and inhibits the ubiquitin-mediated CDK6 degradation.
View Article and Find Full Text PDFBackground: There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor.
View Article and Find Full Text PDFMammalian target of rapamycin complex 1 and 2 (mTORC1/2) are overactive in colorectal carcinomas; however, the first generation of mTOR inhibitors such as rapamycin have failed to show clinical benefits in treating colorectal carcinoma in part due to their effects only on mTORC1. The second generation of mTOR inhibitors such as PP242 targets mTOR kinase; thus, they are capable of inhibiting both mTORC1 and mTORC2. To examine the therapeutic potential of the mTOR kinase inhibitors, we treated a panel of colorectal carcinoma cell lines with PP242.
View Article and Find Full Text PDFRecent advances in genomic sequencing have resulted in the discovery of the somatic mutations of cytoplasmic isocitrate dehydrogenase 1 (IDH1) in human solid tumors such as gliomas. The most common IDH1 mutation affects codon 132 and results in the conversion of amino acid residue arginine (R) to histidine (H). This IDH1 mutation is associated with a genetic and clinical characteristic group of gliomas in terms of grade and prognosis.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
May 2012
Unlabelled: The TNF-related apoptosis-inducing ligand (TRAIL) apoptotic pathway has emerged as a therapeutic target for the treatment of cancer. However, clinical trials have proven that the vast majority of human cancers are resistant to TRAIL apoptotic pathway-targeted therapies. We show that A20-mediated ubiquitination inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma through 2 signaling complexes.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) is highly expressed in colorectal carcinomas and, as a result, it leads to the activation of downstream mammalian target of rapamycin (mTOR) kinase pathways for cancer growth and progression. Clinical and preclinical studies, however, have shown that inhibition of epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) alone is not sufficient to treat colorectal carcinomas. In search of effective combination therapies, we show here that simultaneous targeting of EGFR with its inhibitor, erlotinib and mTOR with its inhibitor, rapamycin inhibits the phosphorylation and activation of downstream phosphatidylinositol 3-kinase (PI3K), Akt, mTOR and extracellular-signal-regulated kinase 1/2 (Erk1/2) pathways, resulting in the inhibition of cell cycle progression and the growth of both KRAS wild-type and mutated colorectal carcinoma cells.
View Article and Find Full Text PDFMammalian target of rapamycin complex 1 (mTORC1) is frequently activated in human cancers; however, clinical trials of rapalog (the mTORC1 inhibitors) have shown that pancreatic ductal adenocarcinomas (PDACs) resist to the treatment. Rapalog treatment activated the extracellular signal-regulated kinase (ERK) pathway in K-Ras mt PDAC cells. K-Ras knockdown abolished the insulin-like growth factor-1 (IGF-1)-induced ERK pathway in the K-Ras mt PDAC cells and enhanced the therapeutic efficacy of everolimus in treating K-Ras mt PDAC cells-derived mouse xenografts.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2012
A20 was initially identified as a primary gene product following TNF α treatment in human umbilical vein endothelial cells. Increased A20 expression is associated with tumorigenesis in many cancers, whereas the loss of A20 function is linked to lymphoma. It has been reported that A20 protects cells from TRAIL-induced apoptosis; however, the mechanism by which A20 is involved is still largely unknown.
View Article and Find Full Text PDFGlioblastoma-derived stem cells (GSCs) are responsible for the cancer resistance to therapies. We show here that GSC-enriched neurospheres are resistant to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to the insufficient expression of the death receptor DR4 and DR5 and the overexpression of cellular Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (c-FLIP). However, treatment with cisplatin leads to the upregulation of DR5 and downregulation of c-FLIP and restores TRAIL apoptotic pathway in the neurospheres.
View Article and Find Full Text PDFRecent studies suggest that cancer stem cells (CSCs) are responsible for cancer resistance to therapies. We therefore investigated how glioblastoma-derived CSCs respond to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Neurospheres were generated from glioblastomas, characterized for CSC properties including self-renewal, cell differentiation and xenograft formation capacity, and analyzed for TRAIL-induced apoptosis, CASP8 genomic status, and caspase-8 protein expression.
View Article and Find Full Text PDFSmac mimetics are being developed as a new class of anticancer therapies. Because the single-agent activity of Smac mimetics is very limited, rational combinations represent a viable strategy for their clinical development. The combination of Smac mimetics with TNF-related apoptosis inducing ligand (TRAIL) may be particularly attractive because of the low toxicity of TRAIL to normal cells and the synergistic antitumor activity observed for the combination.
View Article and Find Full Text PDFTo explore the molecular mechanisms by which glioblastomas are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), we examined TRAIL signalling pathways in the tumours. TRAIL has four membrane-anchored receptors, death receptor 4/5 (DR4/5) and decoy receptor 1/2 (DcR1/2). Of these receptors, only DR5 was expressed consistently in glioblastoma cell lines and tumour tissues, ruling out the role of DcR1/2 in TRAIL resistance.
View Article and Find Full Text PDFRev Recent Clin Trials
January 2009
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is normally expressed in the human immune system and plays a critical role in antitumor immunity. TRAIL interacts with the death receptors, DR4 and DR5, and activates intracellular apoptotic pathway in cancer cells. This discovery has resulted in a rapid development of cancer therapeutic agents that can activate this apoptotic pathway.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it is capable of preferentially inducing apoptosis in human cancer over normal cells. The majority of human pancreatic cancers, unfortunately, are resistant to TRAIL treatment. Here, we show that the inhibition of caspase-8 cleavage is the most upstream event in TRAIL resistance in pancreatic cancers.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is capable of inducing apoptosis in non-small cell lung carcinoma (NSCLC). However, many of the human NSCLC cell lines are resistant to TRAIL, and TRAIL treatment of the resistant cells leads to the activation of nuclear factor-kappaB (NF-kappaB) and extracellular signal-regulated kinase 1/2 (ERK1/2). TRAIL can induce apoptosis in TRAIL-sensitive NSCLC cells through the induction of death-inducing signaling complex (DISC) assembly in lipid rafts of plasma membrane.
View Article and Find Full Text PDFHuman astrocytes express Fas yet are resistant to Fas-induced apoptosis. Here, we report that calcium/calmodulin-dependent protein kinase II (CaMKII) is constitutively activated in human astrocytes and protects the cells from apoptotic stimulation by Fas agonist. Once stimulated, Fas recruits Fas-associated death domain and caspase-8 for the assembly of the death-inducing signaling complex (DISC); however, caspase-8 cleavage is inhibited in the DISC.
View Article and Find Full Text PDFAfter cerebral ischemia, angiogenesis, by supplying for the deficient perfusion, may be a beneficial process for limiting neuronal death and promoting tissue repair. In this study, we showed that the combination of Ang-1 and vascular endothelial growth factor (VEGF) provides a more adapted therapeutic strategy than the use of VEGF alone. Indeed, we showed on a focal ischemia model that an early administration of VEGF exacerbates ischemic damage, because of its effects on blood-brain barrier (BBB) permeability.
View Article and Find Full Text PDFInterleukin-8 (IL-8, or CXCL8), which is a chemokine with a defining CXC amino acid motif that was initially characterized for its leukocyte chemotactic activity, is now known to possess tumorigenic and proangiogenic properties as well. In human gliomas, IL-8 is expressed and secreted at high levels both in vitro and in vivo, and recent experiments suggest it is critical to glial tumor neovascularity and progression. Levels of IL-8 correlate with histologic grade in glial neoplasms, and the most malignant form, glioblastoma, shows the highest expression in pseudopalisading cells around necrosis, suggesting that hypoxia/anoxia may stimulate expression.
View Article and Find Full Text PDF