Background: Point-of-care SARS-CoV-2 antigen tests have great potential to help combat the COVID-19 pandemic. In the performance of a rapid, antigen-based SARS-CoV-2 test (RAT), our study had 3 main objectives: to determine the accuracy of nasal swabs, the accuracy of using nasopharyngeal swabs for nasal collection (nasalNP), and the effectiveness of using residual extraction buffer for real-time reverse-transcriptase PCR (RT-PCR) confirmation of positive RAT (rPan).
Methods: Symptomatic adults recently diagnosed with COVID-19 in the community were recruited into the study.
The ID NOW is FDA approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of symptom onset for COVID-19 if tested within 1 h of specimen collection. Clinical data on the performance of the ID NOW are limited, with many studies varying in their study design and/or having small sample size. In this study we aimed to determine the clinical performance of the ID NOW compared to conventional RT-PCR testing.
View Article and Find Full Text PDFJ Assoc Med Microbiol Infect Dis Can
March 2021
Background: The recent emergence and rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrates the urgent need for laboratory-developed assays for clinical diagnosis and public health interventions in the absence of commercial assays.
Methods: We outline the progression of reverse-transcriptase polymerase chain reaction (RT-PCR) assays that were developed and validated at the Alberta Precision Laboratories, Public Health Laboratory, Alberta, Canada, to respond to this pandemic. Initially, testing was performed using SARS-CoV-2-specific and pan-coronavirus gel-based assays that were soon superseded by real-time RT-PCR assays targeting the envelope and RNA-dependent RNA polymerase genes to accommodate the high anticipated volumes of samples.
In the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the co-circulation of SARS-CoV-2 and other respiratory viruses during the upcoming fall and winter seasons may present an unprecedented burden of respiratory disease in the population. Important respiratory viruses that will need to be closely monitored during this time include SARS-CoV-2, influenza A and influenza B. The epidemiology of these viruses is very similar in terms of susceptible populations, mode of transmission, and the clinical syndromes, thus the etiological agent will be difficult to differentiate without target specific assays.
View Article and Find Full Text PDFSARS-CoV-2 antigen tests used at the point-of-care, such as the Abbott Panbio, have great potential to help combat the COVID-19 pandemic. The Panbio is Health Canada approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of COVID-19 symptom onset(s). Symptomatic adults recently diagnosed with COVID-19 in the community were recruited into the study.
View Article and Find Full Text PDFAn outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) began in Wuhan, Hubei, China, in December 2019 and spread rapidly worldwide. The response by the Alberta Precision Laboratories, Public Health Laboratory (ProvLab), AB, Canada, included the development and implementation of nucleic acid detection-based assays and dynamic changes in testing protocols for the identification of cases as the epidemic curve increased exponentially. This rapid response was essential to slow down and contain transmission and provide valuable time to the local health authorities to prepare appropriate response strategies.
View Article and Find Full Text PDFWe identified a novel recombinant GII.P16-GII.12 norovirus associated with epidemic and endemic gastroenteritis during March 1, 2018-February 12, 2019, in Alberta, Canada.
View Article and Find Full Text PDFMeasles is one of the most contagious viral respiratory infections and was declared to be eliminated from Canada in 1998; however, measles cases and outbreaks still occur every year through reintroduction from other parts of the world. Laboratory confirmation of measles virus (MV) RNA by real-time PCR provides a definitive diagnosis, and molecular analysis to determine the genotype is the only way to distinguish between wild-type and vaccine strains. This distinction is important since live attenuated vaccine strains are able to replicate in the patient and can be associated with rash and fever but are poorly transmissible, if at all.
View Article and Find Full Text PDFHerpes simplex viruses (HSV) and varicella zoster virus (VZV) can have very similar and wide-ranging clinical presentations. Rapid identification is necessary for timely antiviral therapy, especially with infections involving the central nervous system, neonates, and immunocompromised individuals. Detection of HSV-1, HSV-2 and VZV was combined into one real-time PCR reaction utilizing hydrolysis probes.
View Article and Find Full Text PDFDetection of all enteroviruses while excluding cross-detection of rhinoviruses is challenging because of sequence similarities in the commonly used conserved targets for molecular assays. In addition, simultaneous detection and differentiation of enteroviruses and parechoviruses would be beneficial because of a similar clinical picture presented by these viruses. A sensitive and specific real-time RT-PCR protocol that can address these clinical needs would be valuable to molecular diagnostic laboratories.
View Article and Find Full Text PDFClinical cervical cytology specimens (n = 466) collected in PreservCyt (Hologic Inc.) were used to evaluate the agreement between Hybrid Capture 2 (hc2; Qiagen) and cobas 4800 (c4800; Roche Molecular Diagnostics) for the detection of high-risk human papillomavirus (HR HPV) genotype infections. The agreement between the two assays was 93.
View Article and Find Full Text PDFTracking novel influenza viruses which have the potential to cause pandemics, such as the pandemic (H1N1) 2009 virus, is a public health priority. Pandemic (H1N1) 2009 virus was first identified in Mexico in April 2009 and spread worldwide over a short period of time. Well-validated diagnostic tools that are rapid, sensitive, and specific for the detection and tracking of this virus are needed.
View Article and Find Full Text PDF