Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1.
View Article and Find Full Text PDFBackground: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration.
View Article and Find Full Text PDFThe molecular motor dynein is regulated by the huntingtin protein, and Huntington's disease (HD) mutations of huntingtin disrupt dynein motor activity. Besides abnormalities in the central nervous system, HD animal models develop prominent peripheral pathology, with defective brown tissue thermogenesis and dysfunctional white adipocytes, but whether this peripheral phenotype is recapitulated by dynein dysfunction is unknown. Here, we observed prominently increased adiposity in mice harboring the legs at odd angles (Loa/+) or the Cramping mutations (Cra/+) in the dynein heavy chain gene.
View Article and Find Full Text PDFIn neurons, cytoplasmic dynein functions as a molecular motor responsible for retrograde axonal transport. An impairment of axonal transport is thought to play a key role in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis, the most frequent motor neuron disease in the elderly. In this regard, previous studies described two heterozygous mouse strains bearing missense point mutations in the dynein heavy chain 1 gene that were reported to display late-onset progressive motor neuron degeneration.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease, causing motor neuron degeneration, muscle atrophy, paralysis, and death. Despite this degenerative process, a stable hypermetabolic state has been observed in a large subset of patients. Mice expressing a mutant form of Cu/Zn-superoxide dismutase (mSOD1 mice) constitute an animal model of ALS that, like patients, exhibits unexpectedly increased energy expenditure.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease characterized by degeneration of upper and lower motor neurons, generalized weakness and muscle atrophy. Most cases of ALS appear sporadically but some forms of the disease result from mutations in the gene encoding the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1). Several other mutated genes have also been found to predispose to ALS including, among others, one that encodes the regulator of axonal retrograde transport dynactin.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss and muscle wasting. In muscles of ALS patients, Nogo-A-a protein known to inhibit axon regeneration-is ectopically expressed at levels that correlate with the severity of the clinical symptoms. We now show that the genetic ablation of Nogo-A extends survival and reduces muscle denervation in a mouse model of ALS.
View Article and Find Full Text PDFReticulons (RTNs) are a family of proteins that are primarily associated with the endoplasmic reticulum. In mammals, four genes have been identified and referred as to rtn1, 2, 3 and the neurite outgrowth inhibitor rtn4/nogo. These genes generate multiple isoforms that contain a common C-terminal reticulon homology domain of 150-200 amino-acid residues.
View Article and Find Full Text PDF