Biosensors (Basel)
September 2022
Noble metal nanostructures are known to confine photon energies to their dimensions with resonant oscillations of their conduction electrons, leading to the ultrahigh enhancement of electromagnetic fields in numerous spectroscopic methods. Of all the possible plasmonic nanomaterials, silver offers the most intriguing properties, such as best field enhancements and tunable resonances in visible-to-near infrared regions. This review highlights the recent developments in silver nanostructured substrates for plasmonic sensing with the main emphasis on surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS) over the past decade.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2022
Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations.
View Article and Find Full Text PDFBiosens Bioelectron
January 2022
Here, we present a portable, selective and cost-effective fiber-optic surface plasmon resonance (SPR) based platform for early detection of Dengue virus. NS1 protein was targeted as the biomarker of dengue. Antibody-antigen specific binding was exploited for NS1 antigen detection.
View Article and Find Full Text PDFThe surface plasmon resonance (SPR) technique is a remarkable tool, with applications in almost every area of science and technology. Sensing is the foremost and majorly explored application of SPR technique. The last few decades have seen a surge in SPR sensor research related to sensitivity enhancement and innovative target materials for specificity.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) based dopamine sensor is realized using the state-of-art technique of molecular imprinting over an optical fiber substrate. Polypyrrole (PPy) is depicted as an effective polymer for the imprinting of dopamine through a green synthesis approach. Sensitivity of the probe is enhanced by the augmenting effect of surface imprinting of dopamine in polypyrrole over multiwalled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFA facile approach is presented for the detection of bovine serum albumin (BSA), based on fiber optic surface plasmon resonance (FOSPR) combined with molecular imprinting (MI). The probe is fabricated by exploiting the plasmonic property of silver thin film and vinyl-functionalised carbon nanotube-based MIP platform. BSA template molecules are imprinted on the MIP layer coated over multi-walled carbon nanotubes to ensure high specificity of the probe in the interfering environments.
View Article and Find Full Text PDFA highly sensitive ammonia gas sensor exploiting the gas sensing characteristics of tin oxide (SnO) has been reported. The methodology of the sensor is based on the phenomenon of surface plasmon resonance (SPR) with a fiber-optic probe consisting of coatings of silver as a plasmonic material and SnO as the sensing layer. The sensing principle relies on the change in refractive index of SnO upon its reaction with ammonia gas.
View Article and Find Full Text PDF