A series of strained alkynes, based on the 2,2'-dihydroxy-1,1'-biaryl structure, were prepared in a short sequence from readily-available starting materials. These compounds can be readily converted into further derivatives including examples containing fluorescent groups with potential for use as labelling reagents. The alkynes are able to react in cycloadditions with a range of azides without the requirement for a copper catalyst, in clean reactions with no observable side reactions.
View Article and Find Full Text PDFTriangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core and verification of the triplet ground state via electron paramagnetic resonance measurements.
View Article and Find Full Text PDFH-Benzo[cd]pyrene ('Olympicene') is a polyaromatic hydrocarbon and non-Kekulé fragment of graphene. A new synthetic method has been developed for the formation of 6H-benzo[cd]pyrene and related ketones including the first time isolation of the unstable alcohol 6H-benzo[cd]pyren-6-ol. Molecular imaging of the reaction products with scanning tunnelling microscopy (STM) and non-contact atomic force microscopy (NC-AFM) characterised the 6H-benzo[cd]pyrene as well as the previously intangible and significantly less stable 5H-benzo[cd]pyrene, the fully conjugated benzo[cd]pyrenyl radical and the ketones as oxidation products.
View Article and Find Full Text PDFWe measured the adsorption geometry of single molecules with intramolecular resolution using noncontact atomic force microscopy with functionalized tips. The lateral adsorption position was determined with atomic resolution, adsorption height differences with a precision of 3 pm, and tilts of the molecular plane within 0.2°.
View Article and Find Full Text PDF