Publications by authors named "Anish Chakka"

The mammalian cortex is composed of a highly diverse set of cell types and develops through a series of temporally regulated events that build out the cell type and circuit foundation for cortical function. The mechanisms underlying the development of different cell types remain elusive. Single-cell transcriptomics provides the capacity to systematically study cell types across the entire temporal range of cortical development.

View Article and Find Full Text PDF
Article Synopsis
  • Biological aging involves a gradual loss of homeostasis in molecular and cellular functions, particularly in the brain, which contains diverse cell types that differ in their aging resilience.
  • This study offers an extensive single-cell RNA sequencing dataset of approximately 1.2 million transcriptomes from brain cells in young and aged mice, identifying 847 cell clusters and 14 age-biased clusters predominantly involving glial types.
  • Key findings reveal specific gene expression changes with aging, including decreased neuronal function genes and increased immune-related genes, particularly in cells around the third ventricle of the hypothalamus, suggesting its critical role in the aging process of the mouse brain.
View Article and Find Full Text PDF

We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers addressed the limited access to lower motor neurons (LMNs) in the mammalian spinal cord by creating single cell multiome datasets from mouse and macaque spinal cords to identify enhancers for different neuronal populations.* -
  • They cloned identified enhancers into viral vectors and conducted functional tests in mice to screen for effective candidates, which were then validated in rats and macaques.* -
  • This new toolkit for labeling LMNs and upper motor neurons (UMNs) can facilitate future research on cell function across species and contribute to potential therapies for neurodegenerative diseases in humans.*
View Article and Find Full Text PDF
Article Synopsis
  • * This study analyzed over 600,000 single-cell transcriptomes from adult and developing mice to create a detailed classification of GABAergic neuron types, revealing a complex organization with numerous subclasses and clusters.
  • * The research found that GABAergic neurons often migrate long distances and show variations in gene expression based on their spatial locations, with different stages of development leading to diversity in specific neuron types across various brain regions.
View Article and Find Full Text PDF
Article Synopsis
  • The mammalian cortex consists of different cell types that have specific properties, which are important for understanding how the cortex functions in both health and disease.
  • Researchers utilized data from mouse and human studies to identify marker genes and enhancers for various cortical cell types, creating a comprehensive set of tools for targeting these cells specifically.
  • They introduced fifteen new transgenic driver lines, two new reporter lines, and over 800 enhancer AAVs, facilitating a wide range of experimental approaches to study the mammalian cortex and its functions.
View Article and Find Full Text PDF

Immune checkpoint inhibition has shown success in treating metastatic cutaneous melanoma but has limited efficacy against metastatic uveal melanoma, a rare variant arising from the immune privileged eye. To better understand this resistance, we comprehensively profile 100 human uveal melanoma metastases using clinicogenomics, transcriptomics, and tumor infiltrating lymphocyte potency assessment. We find that over half of these metastases harbor tumor infiltrating lymphocytes with potent autologous tumor specificity, despite low mutational burden and resistance to prior immunotherapies.

View Article and Find Full Text PDF

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others.

View Article and Find Full Text PDF

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.

View Article and Find Full Text PDF

4E-BP1 is a tumor suppressor regulating cap-dependent translation that is in turn controlled by mechanistic target of rapamycin (mTOR) or cyclin-dependent kinase 1 (CDK1) phosphorylation. 4E-BP1 serine 82 (S82) is phosphorylated by CDK1, but not mTOR, and the consequences of this mitosis-specific phosphorylation are unknown. Knock-in mice were generated with a single 4E-BP1 S82 alanine (S82A) substitution leaving other phosphorylation sites intact.

View Article and Find Full Text PDF
Article Synopsis
  • The brain of a mouse has millions of different cells, and scientists want to make a complete list of these cell types to understand how the brain works.
  • Researchers created a detailed map of these cells by studying around 7 million cells with a special technique that looks at their genes and how they are placed in the brain.
  • They discovered that there are many different types of cells in the brain, with some areas being very unique, like the dorsal part having fewer but more distinct types, while the ventral part has many similar types.
View Article and Find Full Text PDF

The human immune response to inactivated influenza vaccine is dynamic and impacted by age and preexisting immunity. Our goal was to identify postvaccination transcriptomic changes in peripheral blood mononuclear cells from children. Blood samples were obtained before and at 3 or 7 days postvaccination with 2016-2017 quadrivalent inactivated influenza vaccine and RNA sequencing was performed.

View Article and Find Full Text PDF

Reactivation of androgen receptor (AR) appears to be the major mechanism driving the resistance of castration-resistant prostate cancer (CRPC) to second-generation antiandrogens and involves AR overexpression, AR mutation, and/or expression of AR splice variants lacking ligand-binding domain. There is a need for novel small molecules targeting AR, particularly those also targeting AR splice variants such as ARv7. A high-throughput/high-content screen was previously reported that led to the discovery of a novel lead compound, 2-(((3,5-dimethylisoxazol-4-yl)methyl)thio)-1-(4-(2,3-dimethylphenyl)piperazin-1-yl)ethan-1-one (IMTPPE), capable of inhibiting nuclear AR level and activity in CRPC cells, including those resistant to enzalutamide.

View Article and Find Full Text PDF

Background: Mechanisms of resistance to immune-modulating cancer treatments are poorly understood. Using a novel cohort of patients with head and neck squamous cell carcinoma (HNSCC), we investigated mechanisms of immune escape from epidermal growth factor receptor-specific monoclonal antibody (mAb) therapy.

Methods: HNSCC tumors (n = 20) from a prospective trial of neoadjuvant cetuximab monotherapy underwent whole-exome sequencing.

View Article and Find Full Text PDF

Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations.

View Article and Find Full Text PDF

The tumor suppressor genes EAF2 and p53 are frequently dysregulated in prostate cancers. Recently, we reported that concurrent p53 nuclear staining and EAF2 downregulation were associated with high Gleason score. Combined loss of EAF2 and p53 in a murine model induced prostate tumors, and concurrent knockdown of EAF2 and p53 in prostate cancer cells enhanced proliferation and migration, further suggesting that EAF2 and p53 could functionally interact in the suppression of prostate tumorigenesis.

View Article and Find Full Text PDF

Background: The Cancer Genome Atlas Project (TCGA) is a National Cancer Institute effort to profile at least 500 cases of 20 different tumor types using genomic platforms and to make these data, both raw and processed, available to all researchers. TCGA data are currently over 1.2 Petabyte in size and include whole genome sequence (WGS), whole exome sequence, methylation, RNA expression, proteomic, and clinical datasets.

View Article and Find Full Text PDF

Exposure to excess glucocorticoids during fetal development has long-lasting physiological and behavioral consequences, although the mechanisms are poorly understood. The impact of prenatal glucocorticoids exposure on stress responses in juvenile and adult offspring implicates the developing hypothalamus as a target of adverse prenatal glucocorticoid action. Therefore, primary cultures of hypothalamic neural-progenitor/stem cells (NPSCs) derived from mouse embryos (embryonic day 14.

View Article and Find Full Text PDF

Next Generation Sequencing (NGS) methods are driving profound changes in biomedical research, with a growing impact on patient care. Many academic medical centers are evaluating potential models to prepare for the rapid increase in NGS information needs. This study sought to investigate (1) how and where sequencing data is generated and analyzed, (2) research objectives and goals for NGS, (3) workforce capacity and unmet needs, (4) storage capacity and unmet needs, (5) available and anticipated funding resources, and (6) future challenges.

View Article and Find Full Text PDF

Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date.

View Article and Find Full Text PDF