Background: Depression and anxiety disorders among the global population have worsened during the COVID-19 pandemic. Yet, current methods for screening these two issues rely on in-person interviews, which can be expensive, time-consuming, and blocked by social stigma and quarantines. Meanwhile, how individuals engage with online platforms such as Google Search and YouTube has undergone drastic shifts due to COVID-19 and subsequent lockdowns.
View Article and Find Full Text PDFBackground: The identification of surgical site infections for infection surveillance in hospitals depends on the manual abstraction of medical records and, for research purposes, depends mainly on the use of administrative or claims data. The objective of this study was to determine whether automating the abstraction process with natural language processing (NLP)-based models that analyze the free-text notes of the medical record can identify surgical site infections with predictive abilities that match the manual abstraction process and that surpass surgical site infection identification from administrative data.
Methods: We used surgical site infection surveillance data compiled by the infection prevention team to identify surgical site infections among patients undergoing orthopaedic surgical procedures at a tertiary care academic medical center from 2011 to 2017.