This paper shows the efficacy of a novel urban categorization framework based on deep learning, and a novel categorization method customized for cities in the global south. The proposed categorization method assesses urban space broadly on two dimensions-the states of urbanization and the architectural form of the units observed. This paper shows how the sixteen sub-categories can be used by state-of-the-art deep learning modules (fully convolutional network FCN-8, U-Net, and DeepLabv3+) to categorize formal and informal urban areas in seven urban cities in the developing world-Dhaka, Nairobi, Jakarta, Guangzhou, Mumbai, Cairo, and Lima.
View Article and Find Full Text PDF