In recent years, deep learning (DL) has shown great potential in the field of dermatological image analysis. However, existing datasets in this domain have significant limitations, including a small number of image samples, limited disease conditions, insufficient annotations, and non-standardized image acquisitions. To address these shortcomings, we propose a novel framework called DermSynth3D.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2022
In this work, we propose a novel approach for generating videos of the six basic facial expressions given a neutral face image. We propose to exploit the face geometry by modeling the facial landmarks motion as curves encoded as points on a hypersphere. By proposing a conditional version of manifold-valued Wasserstein generative adversarial network (GAN) for motion generation on the hypersphere, we learn the distribution of facial expression dynamics of different classes, from which we synthesize new facial expression motions.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2020
In this article, we propose a new approach for facial expression recognition (FER) using deep covariance descriptors. The solution is based on the idea of encoding local and global deep convolutional neural network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of symmetric positive definite (SPD) matrices.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2020
In this paper, we propose a novel space-time geometric representation of human landmark configurations and derive tools for comparison and classification. We model the temporal evolution of landmarks as parametrized trajectories on the Riemannian manifold of positive semidefinite matrices of fixed-rank. Our representation has the benefit to bring naturally a second desirable quantity when comparing shapes-the spatial covariance-in addition to the conventional affine-shape representation.
View Article and Find Full Text PDFProc Int Conf Autom Face Gesture Recognit
May 2018
Recent breakthroughs in deep learning using automated measurement of face and head motion have made possible the first objective measurement of depression severity. While powerful, deep learning approaches lack interpretability. We developed an interpretable method of automatically measuring depression severity that uses barycentric coordinates of facial landmarks and a Lie-algebra based rotation matrix of 3D head motion.
View Article and Find Full Text PDF