Recent experiments have revealed that neural population codes in many brain areas continuously change even when animals have fully learned and stably perform their tasks. This representational 'drift' naturally leads to questions about its causes, dynamics and functions. Here we explore the hypothesis that neural representations optimize a representational objective with a degenerate solution space, and noisy synaptic updates drive the network to explore this (near-)optimal space causing representational drift.
View Article and Find Full Text PDFThe brain must extract behaviorally relevant latent variables from the signals streamed by the sensory organs. Such latent variables are often encoded in the dynamics that generated the signal rather than in the specific realization of the waveform. Therefore, one problem faced by the brain is to segment time series based on underlying dynamics.
View Article and Find Full Text PDFCortical pyramidal neurons receive inputs from multiple distinct neural populations and integrate these inputs in separate dendritic compartments. We explore the possibility that cortical microcircuits implement canonical correlation analysis (CCA), an unsupervised learning method that projects the inputs onto a common subspace so as to maximize the correlations between the projections. To this end, we seek a multichannel CCA algorithm that can be implemented in a biologically plausible neural network.
View Article and Find Full Text PDFNormative models of neural computation offer simplified yet lucid mathematical descriptions of murky biological phenomena. Previously, online Principal Component Analysis (PCA) was used to model a network of single-compartment neurons accounting for weighted summation of upstream neural activity in the soma and Hebbian/anti-Hebbian synaptic learning rules. However, synaptic plasticity in biological neurons often depends on the integration of synaptic currents over a dendritic compartment rather than total current in the soma.
View Article and Find Full Text PDFQuantifying the effect of vital resources on transcription (TX) and translation (TL) helps to understand the degree to which the concentration of each resource must be regulated for achieving homeostasis. Utilizing the synthetic TX-TL system, we study the impact of nucleotide triphosphates (NTPs) and magnesium (Mg) on gene expression. Recent observations of the counter-intuitive phenomenon of suppression of gene expression at high NTP concentrations have led to the speculation that such suppression is due to the consumption of resources by TX, hence leaving fewer resources for TL.
View Article and Find Full Text PDFModeling self-organization of neural networks for unsupervised learning using Hebbian and anti-Hebbian plasticity has a long history in neuroscience. Yet derivations of single-layer networks with such local learning rules from principled optimization objectives became possible only recently, with the introduction of similarity matching objectives. What explains the success of similarity matching objectives in deriving neural networks with local learning rules? Here, using dimensionality reduction as an example, we introduce several variable substitutions that illuminate the success of similarity matching.
View Article and Find Full Text PDFBackground: Circular chromosome conformation capture (4C) has provided important insights into three dimensional (3D) genome organization and its critical impact on the regulation of gene expression. We developed a new quantitative framework based on polymer physics for the analysis of paired-end sequencing 4C (PE-4Cseq) data. We applied this strategy to the study of chromatin interaction changes upon a 4.
View Article and Find Full Text PDFThe dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized, we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population.
View Article and Find Full Text PDFIn addition to gene network switches, local epigenetic modifications to DNA and histones play an important role in all-or-none cellular decision-making. Here, we study the dynamical design of a well-characterized epigenetic chromatin switch: the yeast SIR system, in order to understand the origin of the stability of epigenetic states. We study hysteresis in this system by perturbing it with a histone deacetylase inhibitor.
View Article and Find Full Text PDFWe introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior.
View Article and Find Full Text PDFEpigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states.
View Article and Find Full Text PDFScaffolding is an important subproblem in de novo genome assembly, in which mate pair data are used to construct a linear sequence of contigs separated by gaps. Here we present SLIQ, a set of simple linear inequalities derived from the geometry of contigs on the line that can be used to predict the relative positions and orientations of contigs from individual mate pair reads and thus produce a contig digraph. The SLIQ inequalities can also filter out unreliable mate pairs and can be used as a preprocessing step for any scaffolding algorithm.
View Article and Find Full Text PDFAction across long distances on chromatin is a hallmark of eukaryotic transcriptional regulation. Although chromatin structure per se can support long-range interactions, the mechanisms of efficient communication between widely spaced DNA modules in chromatin remain a mystery. The molecular simulations described herein suggest that transient binary internucleosomal interactions can mediate distant communication in chromatin.
View Article and Find Full Text PDFLong-distance regulatory interactions between enhancers and their target genes are commonplace in higher eukaryotes. Interposed boundaries or insulators are able to block these long-distance regulatory interactions. The mechanistic basis for insulator activity and how it relates to enhancer action-at-a-distance remains unclear.
View Article and Find Full Text PDFAlthough many of the core components of the embryonic cell-cycle network have been elucidated, the question of how embryos achieve robust, synchronous cellular divisions post-fertilization remains unexplored. What are the different schemes that could be implemented by the embryo to achieve synchronization? By extending a cell-cycle model previously developed for embryos of the frog Xenopus laevis to include the spatial dimensions of the embryo, we establish a novel role for the rapid, fertilization-initiated calcium wave that triggers cell-cycle oscillations. Specifically, in our simulations a fast calcium wave results in synchronized cell cycles, while a slow wave results in full-blown spatio-temporal chaos.
View Article and Find Full Text PDFHidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and the "inverse" statistical mechanics of hard rods in a one-dimensional disordered potential to investigate learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure of confidence in learned parameters, in the biologically relevant limit where the density of binding sites is low.
View Article and Find Full Text PDFCurrent biological models of epigenetic switches built on chromatin modifications lead to strong constraints on the repertoire of dynamic behaviors for the system. We use the structure of the bifurcation diagram of the underlying dynamical system to explain the existing single cell data in silencing by the SIR system in yeast.
View Article and Find Full Text PDFBMC Bioinformatics
June 2010
Background: High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size genomes from such reads remains a significant challenge. These limitations could be partially overcome by utilizing mate pair technology, which provides pairs of short reads separated by a known distance along the genome.
View Article and Find Full Text PDFBackground: DNA sequence binding motifs for several important transcription factors happen to be self-overlapping. Many of the current regulatory site identification methods do not explicitly take into account the overlapping sites. Moreover, most methods use arbitrary thresholds and fail to provide a biophysical interpretation of statistical quantities.
View Article and Find Full Text PDFMaintenance of alternative chromatin states through cell divisions pose some fundamental constraints on the dynamics of histone modifications. In this paper, we study the systems biology of epigenetic inheritance by defining and analyzing general classes of mathematical models. We discuss how the number of modification states involved plays an essential role in the stability of epigenetic states.
View Article and Find Full Text PDFThe concept of robustness of regulatory networks has received much attention in the last decade. One measure of robustness has been associated with the volume of the feasible region, namely, the region in the parameter space in which the system is functional. In this paper, we show that, in addition to volume, the geometry of this region has important consequences for the robustness and the fragility of a network.
View Article and Find Full Text PDFBackground: Characterizing transcription factor binding motifs is a common bioinformatics task. For transcription factors with variable binding sites, we need to get many suboptimal binding sites in our training dataset to get accurate estimates of free energy penalties for deviating from the consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment) method designed to produce many such sequences.
View Article and Find Full Text PDFThe concept of robustness of regulatory networks has been closely related to the nature of the interactions among genes, and the capability of pattern maintenance or reproducibility. Defining this robustness property is a challenging task, but mathematical models have often associated it to the volume of the space of admissible parameters. Not only the volume of the space but also its topology and geometry contain information on essential aspects of the network, including feasible pathways, switching between two parallel pathways or distinct/disconnected active regions of parameters.
View Article and Find Full Text PDF