Publications by authors named "Anirvan Guha"

Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V.

View Article and Find Full Text PDF

As wearable technologies redefine the way people exchange information, receive entertainment, and monitor health, the development of sustainable power sources that capture energy from the user's everyday activities garners increasing interest. Electric fishes, such as the electric eel and the torpedo ray, provide inspiration for such a power source with their ability to generate massive discharges of electricity solely from the metabolic processes within their bodies. Inspired by their example, the device presented in this work harnesses electric power from ion gradients established by capturing the carbon dioxide (CO ) from human breath.

View Article and Find Full Text PDF

Maintaining membrane integrity is a challenge at extreme temperatures. Biochemical synthesis of membrane-spanning lipids is one adaptation that organisms such as thermophilic archaea have evolved to meet this challenge and preserve vital cellular function at high temperatures. The molecular-level details of how these tethered lipids affect membrane dynamics and function, however, remain unclear.

View Article and Find Full Text PDF

Nanopores with diameters from 20 to 50 nm in silicon nitride (SiN ) windows are useful for single-molecule studies of globular macromolecules. While controlled breakdown (CBD) is gaining popularity as a method for fabricating nanopores with reproducible size control and broad accessibility, attempts to fabricate large nanopores with diameters exceeding ∼20 nm via breakdown often result in undesirable formation of multiple nanopores in SiN membranes. To reduce the probability of producing multiple pores, we combined two strategies: laser-assisted breakdown and controlled pore enlargement by limiting the applied voltage.

View Article and Find Full Text PDF

While mechanochemical transduction principles are omnipresent in nature, mimicking these in artificial materials is challenging. The ability to reliably detect the exposure of man-made objects to mechanical forces is, however, of great interest for many applications, including structural health monitoring and tamper-proof packaging. A useful concept to achieve mechanochromic responses in polymers is the integration of microcapsules, which rupture upon deformation and release a payload causing a visually detectable response.

View Article and Find Full Text PDF

Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere.

View Article and Find Full Text PDF

The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo.

View Article and Find Full Text PDF

The clock protein BMAL1 (brain and muscle Arnt-like protein 1) participates in circadian regulation of lipid metabolism, but its contribution to insulin AKT-regulated hepatic lipid synthesis is unclear. Here we used both Bmal1(-/-) and acute liver-specific Bmal1-depleted mice to study the role of BMAL1 in refeeding-induced de novo lipogenesis in the liver. Both global deficiency and acute hepatic depletion of Bmal1 reduced lipogenic gene expression in the liver upon refeeding.

View Article and Find Full Text PDF

The liver responds to fasting-refeeding cycles by reprogramming expression of metabolic genes. Fasting potently induces one of the key hepatic hormones, fibroblast growth factor 21 (FGF21), to promote lipolysis, fatty acid oxidation, and ketogenesis, whereas refeeding suppresses its expression. We previously reported that the basic leucine zipper transcription factor E4BP4 (E4 binding protein 4) represses Fgf21 expression and disrupts its circadian oscillations in cultured hepatocytes.

View Article and Find Full Text PDF

The mammalian circadian clock coordinates various physiological activities with environmental cues to achieve optimal adaptation. The clock manifests oscillations of key clock proteins, which are under dynamic control at multiple post-translational levels. As a major post-translational regulator, the ubiquitination-dependent proteasome degradation system is counterbalanced by a large group of deubiquitin proteases with distinct substrate preference.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session462iphcia6njt2lqt6eabn4rg08o2rdm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once