Publications by authors named "Anirudh Wodeyar"

In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-REM sleep (EE-SWAS), a sleep stage dominated by sleep spindles, which are brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment.

View Article and Find Full Text PDF

Rhythms are a common feature of brain activity. Across different types of rhythms, the phase has been proposed to have functional consequences, thus requiring its accurate specification from noisy data. Phase is conventionally specified using techniques that presume a frequency band-limited rhythm.

View Article and Find Full Text PDF

Rhythms are a common feature of brain activity. Across different types of rhythms, the phase has been proposed to have functional consequences, thus requiring its accurate specification from noisy data. Phase is conventionally specified using techniques that presume a frequency band-limited rhythm.

View Article and Find Full Text PDF

Structural connectivity provides the backbone for communication between neural populations. Since axonal transmission occurs on a millisecond time scale, measures of M/EEG functional connectivity sensitive to phase synchronization, such as coherence, are expected to reflect structural connectivity. We develop a model of MEG functional connectivity whose edges are constrained by the structural connectome.

View Article and Find Full Text PDF

In a rat model of ischemic stroke by permanent occlusion of the medial cerebral artery (pMCAo), we have demonstrated using continuous recordings by microelectrode array at the depth of the ischemic territory that there is an immediate wide-spread increase in spontaneous local field potential synchrony following pMCAo that was correlated with ischemic stroke damage, but such increase was not seen in control sham-surgery rats. We further found that the underpinning source of the synchrony increase is intermittent bursts of low multi-frequency oscillations. Here we show that such increase in spontaneous LFP synchrony after pMCAo can be reduced to pre-pMCAo baseline level by delivering early (immediately after pMCAo) protective sensory stimulation that reduced the underpinning bursts.

View Article and Find Full Text PDF

Brain rhythms have been proposed to facilitate brain function, with an especially important role attributed to the phase of low-frequency rhythms. Understanding the role of phase in neural function requires interventions that perturb neural activity at a target phase, necessitating estimation of phase in real-time. Current methods for real-time phase estimation rely on bandpass filtering, which assumes narrowband signals and couples the signal and noise in the phase estimate, adding noise to the phase and impairing detections of relationships between phase and behavior.

View Article and Find Full Text PDF

Neural oscillations may contain important information pertaining to stroke rehabilitation. This study examined the predictive performance of electroencephalography-derived neural oscillations following stroke using a data-driven approach. Individuals with stroke admitted to an inpatient rehabilitation facility completed a resting-state electroencephalography recording and structural neuroimaging around the time of admission and motor testing at admission and discharge.

View Article and Find Full Text PDF

The relationship between structural and functional connectivity has been mostly examined in intact brains. Fewer studies have examined how differences in structure as a result of injury alters function. In this study we analyzed the relationship of structure to function across patients with stroke among whom infarcts caused heterogenous structural damage.

View Article and Find Full Text PDF

Stroke is a leading cause of death and the leading cause of long-term disability, but its electrophysiological basis is poorly understood. Characterizing acute ischemic neuronal activity dynamics is important for understanding the temporal and spatial development of ischemic pathophysiology and determining neuronal activity signatures of ischemia. Using a 32-microelectrode array spanning the depth of cortex, electrophysiological recordings generated for the first time a continuous spatiotemporal profile of local field potentials (LFP) and multi-unit activity (MUA) before (baseline) and directly after (0-5 h) distal, permanent MCA occlusion (pMCAo) in a rat model.

View Article and Find Full Text PDF

Background and Purpose- Low-frequency oscillations reflect brain injury but also contribute to normal behaviors. We examined hypotheses relating electroencephalography measures, including low-frequency oscillations, to injury and motor recovery poststroke. Methods- Patients with stroke completed structural neuroimaging, a resting-state electroencephalography recording and clinical testing.

View Article and Find Full Text PDF