Kinesin-14 molecular motors represent an essential class of proteins that bind microtubules and walk toward their minus-ends. Previous studies have described important roles for Kinesin-14 motors at microtubule minus-ends, but their role in regulating plus-end dynamics remains controversial. Kinesin-14 motors have been shown to bind the EB family of microtubule plus-end binding proteins, suggesting that these minus-end-directed motors could interact with growing microtubule plus-ends.
View Article and Find Full Text PDFNeuronal axons terminate as synaptic boutons that form stable yet plastic connections with their targets. Synaptic bouton development relies on an underlying network of both long-lived and dynamic microtubules that provide structural stability for the boutons while also allowing for their growth and remodeling. However, a molecular-scale mechanism that explains how neurons appropriately balance these two microtubule populations remains a mystery.
View Article and Find Full Text PDFThe highly conserved Wnt signaling pathway regulates cell proliferation and differentiation in vertebrates and invertebrates. Upon binding of a Wnt ligand to a receptor of the Fz family, Disheveled (Dsh/Dvl) transduces the signal during canonical and non-canonical Wnt signaling. The specific details of how this process occurs have proven difficult to study, especially as Dsh appears to function as a switch between different branches of Wnt signaling.
View Article and Find Full Text PDFWnt ligands and their downstream pathway components coordinate many developmental and cellular processes. In adults, they regulate tissue homeostasis through regulation of stem cells. Mechanistically, signal transduction through this pathway is complicated by pathway components having both positive and negative roles in signal propagation.
View Article and Find Full Text PDF